

- (1) 2 amp.
- (2) 1 amp.
- (3) 0.5 amp. (4) 1.25 amp.
- 8. Which is correct for inside charged sphere:
 - (1) $E \neq 0$, V = 0
- (2) E=0, V=0 (3) E \neq 0, $V\neq$ 0 (4) E=0, V=0
- 9. The magnetic force experienced charge q in magnetic field moving with velocity V, will maximum when the angle between V and B is :
 - (1) 00
- (2)450
- (3) 900
- (4) 1800
- 10. A parallel plate condenser is charged with a battery. After changing of the condenser battery is removed and two plates are separated from each other with the help of insulating handles, than:
 - (1) capacitance decreases
 - (2) capacitance increases
 - (3) charge on plates increases
 - (4) voltage between plates increase
- 11. The electrical flux from a semi spherical will be :

- (1) πR2E
- (2) <u>4</u> πR2E 3
- (3) 2πR2E
- (4) 2πRE
- 12. In closed organ pipe the produced harmonics are :
 - (1) no harmonics is produced
 - (2) even and odd both
 - (3) odd only
 - (4) even only
- 13. In this wave equation $Y = 5 \sin 2\sqrt[4]{4}t 0.02x$) the wave velocity of wave is:
 - (1) 50 m/sec.
- (2) 150 m/sec.
- (3) 200 m/sec.
- (4) 100 m/sec.

14. Light velocity in vacuum depends u p (1) wavelength (2) frequency	oon : (3) intensity (4) none of these						
15. In a coil the current changes from 2A volt, the coefficient of self induction (1) 8H (2) 0.02 H (3)							
	100 Ω Ω and maximum current which can f shunt to change this galvanometer into (3) 1190 Ω (4) 11,990 Ω						
17. The AC voltage is given by the equation connected in the circuit the RMS value (1) Erms = E0							
(2) Erms = $\frac{1}{\sqrt{2}}$							
(3) $Erms = E0$							
(4) Erms = $\sqrt{2}$ E0							
18. In wattles current phase difference to (1) π/4 (2) π/2 (3) π	between current and voltage is : (4) zero						
19. The ionization potential of hydrogen in its third orbit will be: (1) 3.4 eV (2) – 3.4 eV (3)	is 13.6 eV. The total energy of an electron c) 1.5 eV (4) – 1.5 eV						
20. In radioactive dis-integration the element shift by one place further after the							
emission of the particle : (1) α-particle (2) β-particle	(3) y-particle (4) α,β and y all						
21. A metal surface emitted electrons of incident on the same metal surface t (1) 3 eV (2) 4 eV (3) 5 eV	the energy of the emitted photons will be :						
22. If for an electron m_e = 10 $^{-31}$ kg., velocing the position of electron will be of the (1) 10-4 m (2)10-8 m (3) 10-6 m	he order of :						
23. Forbidden energy gap in Ge is : (1) 0.75 eV (2) 2.5 eV (3) 1.1 eV	√ (4) 5 eV						
24. A rod of length L and mass M is susp oscillations the time period of vibrations							

(1) T =
$$2\pi \sqrt{\frac{2L}{g}}$$

(2) T = $2\pi \sqrt{\frac{L}{g}}$

(3) T =
$$2\pi \sqrt{1L}$$
 2g

$$(4) T = 2\pi \sqrt{2L}$$

$$3g$$

25. Two masses m1 and m2 are attached to the ends of a string by a weight loss rod of length r0. The MI of this system about the axis passing through the center of mass and perpendicular to its length will be:

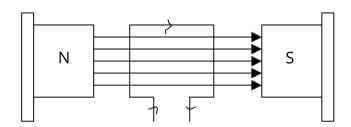
$$\begin{pmatrix} \mu & 0 = & m_1 & m_2 \\ & & m_1 + m_2 \end{pmatrix}$$

$$(1) \mu_0 r_0^2 \qquad (2) \theta r \qquad (3) \theta r^2 \qquad (4) \theta^2 r_0^2$$

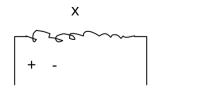
- 26. The energy of monatomic gas is:
 - (1) only rotational (2) only vibrational (3) only translatory (4) all the above
- 27. The work done in increasing the size of a bubble by 10-2 m2 (T = 25 dyne 1 cm.)

28. A geostationary satellite is at a distance of 8 Re revolving around the earth and another satellite is revolving round the earth at 3.5 Re distance, its revolution period will be:

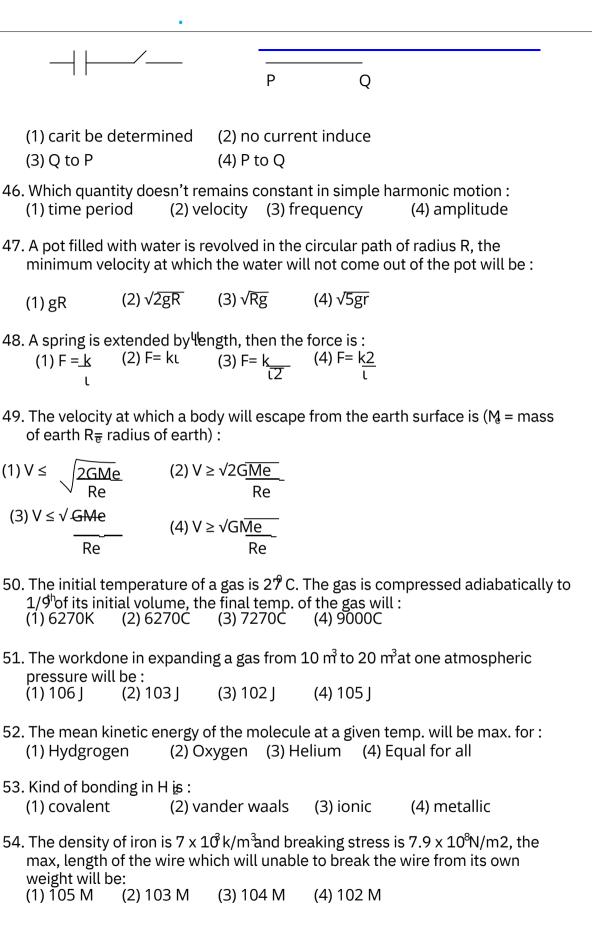
(1) 8.5 hrs. 92) 16.5 hrs. (3) 18 hrs. (4) 12 hrs.

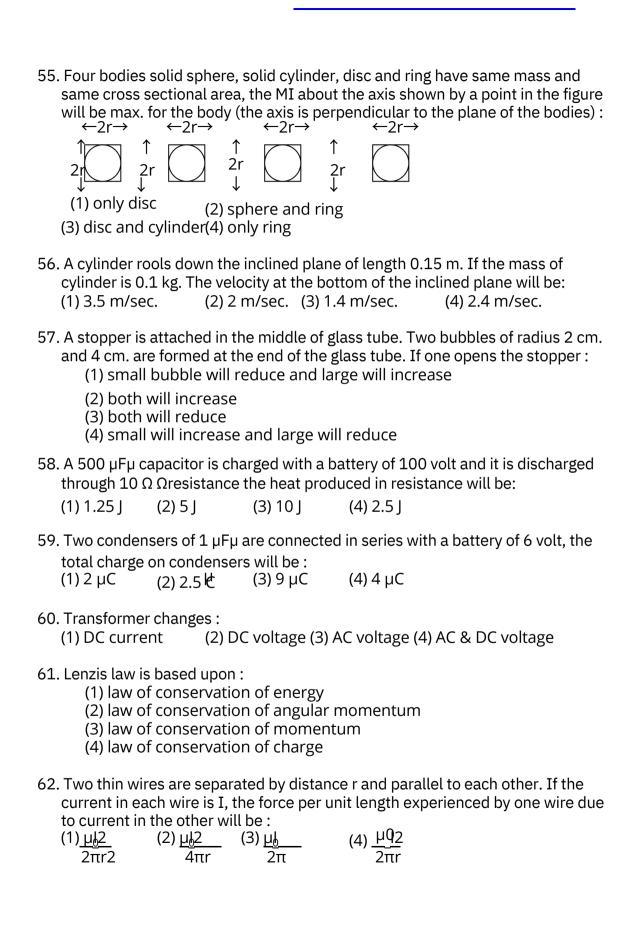

29. The work done per unit extension in length of a wire will be (L = length, A = area of cross section):

30. The total energy of a body at distance r from the earth will be :


31. The kinetic energy of a particle executing SHM is changed by frequency f, the frequency of its motion will be :


(1) f/2	(2) f	(3) 2f	(4) 4f		
32. A body of m horizontal th motion will b	ne angular mo		_	ith velocity v f at the heighes	
(1) mv	(2) m <u>v2</u> 4g	(3) <u>n</u>	<u>nv3</u> I√2g	(4) <u>m</u> 2	V
33. The mass of set free; the wo be:					ehight h and than to another will
(1) 2 mgh	(2) <u>1 mg</u> h 2	(3) n	ngh	(4) zero	
(1) angul (2) angul (3) angul (4) angul 35. A body mov rest. After th	ne collision the	creases ecreases nchanged m decreases /sec. Velocity e velocity of fi	s · collides		th another body at O m/sec., the
velocity of th (1) 30 m/sec	ne second boo c. (2) 60	ly will be: 0 m/sec.	(3) 80	m/sec. (4) 50	m/sec.
36. The radius of made to incider aperture. When radius of aperturescreen will be:	nt on the apert one increases	ture a screen s the radius o	is placed f the ape	d at distance b erture, the valu	from the ue of the
(1) √bλ	(2) √ 3bλ	(3) √4 bλ	(4) √2	nbλ	
37. The length o					cy is n. If the ency will become :
(1) 2n	(2) n 2	(3) √2n	(4) <u>r</u>	<u>1 </u>	
	f approximate e Lissajous fig tuning fork is	gure changes	its shape e frequer		c. If the frequency fork will be :
39. Fundamenta (1) 15 Hz			e is : 80 Hz	94) 10 Hz	


- 40. If charge Q is placed at the center of a cube, the emergent flux from one of the face of the cube will be:
 - (1) Q (2) Q (3) Q (4) Q $2\epsilon 0$ $3\epsilon 0$ $6\epsilon 0$ $\epsilon 0$
- 41. Two equal charges each of value q are placed on a straight line, another charge Q is placed at mid of the distance between the system will be most stable is :
 - $(1) + \underline{q}$ $(2) \underline{q}$ $(3) + \underline{q}$ $(4) \underline{q}$
- 42. An electron passes through an electric field 3200 v/m. of length 0.1 m. with speed 4 x 10 m/sec. The deflection produced in the path of electron will be : (1) 3.52 mm. (2) 1.35 mm. (3) 0.88 mm. (4) 1.76 mm.
- 43. A rectangular coil placed in a magnetic field 0.25 T. The area of coil is 96 x 10-4 m2, no. of turns are 50 and current is 2A, the torque experienced by the coil will be:



- (1) 0.24 N-m. (2) 0.48 N-m. (3) 0.36 N-m. (4) 0.96 N-m.
- 44. If two charged conductors are short circuited by a wire, the current will now flow:
 - (1) sizes are equal
 - (2) capacitances are equal
 - (3) charges are equal
 - (4) potential are equal
- 45. Two coils X and Y are placed near to other according to the figure. If current is passed through X, the direction of induced current in Y will be:

(1)
$$I = Im$$
 (2) $I = Im \sqrt{2}$

(3)
$$I = \lim_{2}$$
 (4) $I = \lim_{\sqrt{2}}$

64. In LCR circuit the voltage and current are given by the equations:
$$E = E0 \sin \omega_t \omega_t = I \otimes \omega_t \omega_t = I \otimes \omega_t \omega_t = I \otimes \omega_$$

(1)
$$\cos \varphi = \frac{R}{\left(\omega L - \frac{1}{C\omega}\right)}$$

(2)
$$\sin \varphi = \omega L - 1 \underline{\qquad}$$

(3)
$$\tan \varphi = \omega L - 1$$

$$C\omega$$
R

(4)
$$\tan \varphi = \underline{\omega L}$$

65. The potential due to electric dipole a point is:

(1) K
$$\begin{pmatrix} \overrightarrow{p+r} \\ \overrightarrow{r3} \end{pmatrix}$$
 (2) K $\begin{pmatrix} \overrightarrow{p+r} \\ \overrightarrow{r3} \end{pmatrix}$

(2) K
$$\left(\begin{array}{c} \rightarrow \\ p+r \\ r3 \end{array}\right)$$

(3) K
$$\begin{pmatrix} \rightarrow \rightarrow \\ p-r \\ r3 \end{pmatrix}$$

(4) K
$$\left(\begin{array}{c} \rightarrow \\ p.r.\\ r3 \end{array}\right)$$

- 66. The magnetic field due to a current carrying wire element will be maximum when the angle between the current element and position vector is:
 - $(1) \pi/2$
- $(2) \pi/4$
- $(3) \pi$
- (4) zero
- 67. A straight current carrying wire and loop are placed according to the figure. If the current is according to the figure:

ŕ	
(1) loop will move towards the v(2) loop will move away from th(3) loop will rotate around the v(4) no change	e wire
68. The rate of heat produced in resistance sec. the current in the resistance (1) 0.5 amp. (2) 2.5 amp. (3) 5 a	
69. The mean life of a <u>rad</u> ioactive substitution (1) $\frac{1}{\sqrt{\lambda}}$ (2) $\sqrt{\lambda}$ (3) $\frac{1}{\lambda}$	
70. The half life of a radioactive subs substance will reduce is 150 days	tance is 25 days. The 25 gm. sample of this s to :
(1) 0.375 gm. (2) 0.75 gm.	(3) 1.5 gm. (4) 4 gm.
71. The wavelengths associated with their momentum will be: (1) 1:1 (2) 2:1	photons and electron are same, the ratio of (3) 1:3 (4) 1:3
72. Work function for a surface is equal (1) ϕ = fermi energy – bindin (2) ϕ = fremi energy (3) ϕ = binding energy – ferm (4) ϕ = binding energy	g energy
•	d at constant temperature, then the velocity of
sound in the gas becomes : (1) unchanged (2) $\sqrt{2}$ times	(3) half (4) double
increase of temperature of black	horter side and others towards longer side th
75. If the temp. of a body is make am (1) 16 times (2) half	nount of radiated energy will become : (3) two times (4) four times
76. If light ray is reflected from the d in the reflected ray will be : (1) λ/4 (2) λ/2 (3) λ	enser medium, the path difference produced (4) zero

•

		•		ally from temp. 270 C to		
	(1) 1000.25 J	ne in the process w (2) – 1245 J		(4) -622.5 J		
	(2) Average kind on the pland	ter than escape ve	locity	net is : gible to the gravitational force		
	79. In a closed contain molecule is 10 m/se pressure will be :			27 kg. and velocity of ntainer is 1024, the		
	(1) 100 N/m2	(2) 10 N/m2	(3) 1 N/m2	(4) 0.5 N/m2		
	80. The heat given a sy and if work done is (1) ΔQ = ΔW-dU	Δ W, the correct rela	tion between a	<u> </u>		
	81. Absorption coefficion (1) less then 1		•	finity		
	V' than:			rms of atomic oxygen is		
	(1) V' = V 2	(2) $V' = \frac{V}{\sqrt{2}}$	(3) V'= <u>V</u> 2	(4) $V' = \sqrt{2} V$		
	83. If one gm. of water		d into vapour o	f 1000 C the external		
	work done in this pr (1) 2100 watt		(3) 2100 J	(4) 2100 cal		
	84. Of which the veloci [,] (1) cathode ray			(4) all		
		•		rces are separated by 2 s 0.03 cm. the wavelength		
	(1) 6000 Å	(2) 5890 Å (3) 5	000 Å	(4) 4000 Å		
86. The horns of two cars emit the sound of natural frequency 240 Hz. One of the car is moving towards one observer with velocity 4 m/sec. and the other car is moving away from the observer with the same velocity. The no. of beat heard						
				x 10-4 v/m (max. value) : -12 T (4) 1.07x10-9T		
	88. 1 amu is equal to :					

(1) 931 MeV		(2)	931 eV	(3) 9	(3) 9.30 eV (4) 931 Ke		KeV	KeV		
89. 1 amp. current flow amp. to a 3 ΩΩresist (1) 2 Ω (2) 1.0			flow is a esistand () 1.0 Ω	circuit v ce. The i	when a on ternal (3) 1	resistan	ce of cel	to ΩRes ll is : (4) 0.5		and 0.5
90. Function of a grid in a triode is : (1) to increase plate voltage (2) to decrease plate voltage (3) to reduce the effect of space charge (4) None										
						triode is	s used a	s an am	plifier ar	$nd_LR = 6$
$k\Omega\Omega$, then voltage amplification is : (1) 40 (2) 60 (3) 20 (4) 30										
92. Ge at absolute temp is a : (1) super cond. (2) conductor (3) semi conductor (4) insulator										
ANSWER SHEET										
1.(4)	2.(4)	3.(4)	4.(4)	5.(3)	6.(2)	7.(3)	8.(4)	9.(3)	10.(1)	11.(1)
12.(3) 23.(1) 34.(1) 45.(3) 56.(3) 67.(2) 78.(1) 89.(2)	13.(3) 24.(4) 35.(3) 46.(2) 57.(1) 68.(3) 79.(3) 90.(1)	58.(4) 69.(3)	15.(3) 26.(3) 37.(4) 48.(2) 59.(1) 70.(1) 81.(2) 92.(4)	16.(2) 27.(2) 38.(4) 49.(2) 60.(3) 71.(1) 82.(4)	17.(2) 28.(2) 39.(1) 50.(2) 61.(1) 72.(4) 83.(3)	51.(1) 62.(4)	19.(4) 30.(2) 41.(4) 52.(4) 63.(4) 74.(3) 85.(1)	42.(4) 53.(2) 64.(3)	54.(3) 65.(4)	22.(2) 33.(4) 44.(4) 55.(1) 66.(1) 77.(2) 88.(1)