BITSAT 2017 Question Paper with Answer Key Birla Institute of Technology and Science Admission Test

BITSAT : SOLVED PAPER 2017

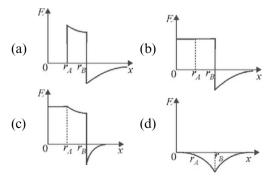
(memory based)

INST BUCTIONS

•	This question paper contains total 🏵 🏵	questions	divided	into fou	r parts
	Part 🖟 Physics Q No 🌊 to				
	Part ליל hemistry Q No 🗯 to				
	P art 나나나 꾀序 쟼 nglish P ro ficien cy	Q No â	҈ to 黨		
	库 ogical Peasoning O No 富介 to 介入				

Part ♭V Mathematics Q No â to â�

- · 꾀II questions are multiple choice questions with four options only one of them is

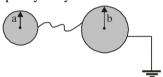

7.

· uration of paper媸□ ours

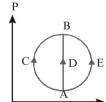
PART - I : PHYSICS

- 1. What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R?
 - (a) $\frac{5\text{GmM}}{6\text{R}}$
- (b) $\frac{2GmM}{3R}$
- (c) $\frac{\text{GmM}}{2\text{R}}$
- (d) $\frac{GmM}{2R}$
- 2. A mercury drop of radius 1 cm is sprayed into 106 drops of equal size. The energy expressed in joule is (surface tension of Mercury is 460 × 10–3 N/m)
 - (a) 0.057
- (b) 5.7
- (c) $5.7 \times 10-4$
- (d) $5.7 \times 10-6$
- 3. Two plano-concave lenses (1 and 2) of glass of refractive index 1.5 have radii of curvature 25 cm and 20 cm. They are placed in contact with their curved surface towards each other and the space between them is filled with liquid of refractive index 4/3. Then the combination is canvex lens of focal length 70 cm concave lens of focal length 70 cm concave lens of focal length 66.6 cm convex lens of focal length 66.6 cm
- 4. A charged particle moves through a magnetic field perpendicular to its direction. Then
 - (a) kinetic energy changes but the momentum is constant

- (b) the momentum changes but the kinetic
-) energy is constant
- (c) both momentum and kinetic energy of the
- (d particle are not constant
-) both momentum and kinetic energy of the particle are constant
- After two hours, one-sixteenth of the starting amount of a certain radioactive isotope remained undecayed. The half life (xf)th(xx)sAtopalisof ind(thetaR0emR000tesnH and resistance test) is connected hours source of voltage 2 V. The currecht reaches half of its steady istates value in)
- (a) 0.1 s (b) 0.05 s (c) 0.3 s (d) 0.15 s Two concentric conducting thin spherical shells A, and B having radii $_{A}^{r}$ and $_{B}^{r}$ (($r_{B}^{>}$ r) are charged to Q and $-Q_{B}(|Q|_{B}^{>}|Q|_{A}^{r})$. The electric field along a line passing through the centre is


- 8. A capillary tube of radius R is immersed in water and water rises in it to a height H. Mass of water in the capillary tube is M. If the radius of the tube is doubled, mass of water that will rise in the capillary tube will the water that will rise in the capillary tube will the water that will rise in the capillary tube will the water that will rise in the capillary tube will the water that will rise in the capillary tube will the water that will rise in the capillary tube will the water that water
- 9. A sonometer wire resonates with a given tuning fork forming standing waves with five antinodes between the two bridges when a mass of 9 kg is suspended from the wire. When this mass is replaced by a mass M, the wire resonates with the same tuning fork forming three antinodes for the same positions of the bridges. The value of M is (a)

When 25 kg When 25 kg stal surface is illuminated by light of


10. Of wavelengths 400 nm and 250 nm, the maximum velocities of the photoelectrons ejected are v

2v respectively. The work function of the metal isc × 106 J (b) 1.5 hc × 106 J (fi) - Pranck & constant, (d) = Veldery & Veldery by ight in

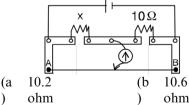
11. Time conducting shells of radius a and b are connected by conducting wire as shown in figure. The capacity of system is:

- (a) $4 pe_0 \frac{ab}{b-a}$
- (b) 4 pe0 (a + b)
- (c) zero
- (d) infinite
- 12. When U235 undergoes fission, 0.1% of its original mass is changed into energy. How much energy is released if 1 kg of 92U23 andergoes fi ssi on
 - (a) $9 \times 1010 \text{ J}$
- (b) $9 \times 1011 \text{ J}$
- (c) $9 \times 1012 \text{ J}$
- (d) $9 \times 1013 \text{ J}$
- 13. One mole of an ideal gas is taken from state A to state B by three different processes,

(i) ACB (ii) ADB (iii) AEB as shown in the P-V diagram. The heat absorbed by the gas is garater in process (ii) than in (i)

(b) (c) (d) (d) (ds the process (ai) X = 3 YZ2, X and Z have satinate (i) in (ii) capacitance and magnesis (iii) ubtain (iii) spectively. The dimensions of Y in MKSA system are: (a) [M-3L-2T-2A-4] (c) [M-3L-2A4T8]

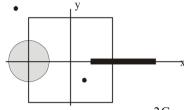
15. Two very long, straight, parallel wires carry steady currents I and -I respectively. The distance between the wires is d. At a certain instant of time, a point charge q is at a point equidistant from the two wires, in the plane of the wires. Its instantaneous velocity v is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is


$$\frac{\text{mOlqv}}{\text{2pd}} \qquad \qquad \text{(b)} \quad \frac{\text{mOlqv}}{\text{pd}}$$

$$\text{(c)} \quad \frac{2\text{m O Iqv}}{\text{do}} \qquad \qquad \text{(d)} \quad 0$$

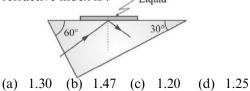
Two projectiles A and B thrown with speeds in **Phactaticed the** same heights. If A is

thrown at an angle of 45° with the horizontal, the angle of projection of B will be (a) 0° (b) 60° (c) 30° (d) 45°


A meter bridge is set up as shown, to determine an unknown resistance 'X' using a standard 10 ohm resistor. The galvanometer shows null point when tapping-key is at 52 cm mark. The end-corrections are 1 cm and 2 cm respectively for the ends A and B. The determined value of 'X' is

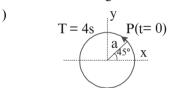
At dis 8 of radius (al /1141 having a funiformly distributed change 6 C is placed in the x - y plane with its centre at (-a / 2, 0, 0). A rod of length a carrying a uniformly distributed charge 8 C is placed on the x-axis from x = a / 4 to x = 5a / 4. Two point charges - 7 C and 3 C are placed at (a / 4, -a / 4, 0) and (-3a / 4, 3a / 4, 0), respectively. Consider a cubical surface formed by six surfaces

 $x = \pm a / 2$, $y = \pm a / 2$, $z = \pm a / 2$. The electric flux


through this cubical surface is

- (a) $\frac{-2C}{e_0}$
- (b) $\frac{2C}{e0}$
- (c) $\frac{100}{e_0}$
- (d) $\frac{120}{e0}$
- 19. A particle of mass m moving in the x direction with speed 2v is hit by another particle of mass 2m moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to

 (a) 56% (b) 62% (c) 44% (d) 50%
- 20. A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil it starts oscillating; It is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to:
 - (a development of air current when the plate is placed
 - induction of electrical charge on the plate
 - (b shielding of magnetic lines of force as aluminium is a paramagnetic material.
 - electromagnetic induction in the aluminium plate giving rise to electromagnetic damping.
- 21. A steel wire of length 'L' at 40°C is suspended from the ceiling and then a mass 'm' is hung from its free end. The wire is cooled down from 40°C to 30°C to regain its original length 'L'. The coefficient of linear thermal expansion of the steel is 10–5 /° C, Young's modulus of steel is 1011 N/m2 and radius of the wire is 1 mm. Assume that L >>diameter of the wire. Then the value of 'm' in kg is nearly
- (a) (b) 2 (c) 3 (d) 5


 22. On a hypotenuse of a right prism (30° 60° 90°) of refractive index 1.50, a drop of liquid is placed as shown in figure. Light is allowed to fall normally on the short face of the prism. In order that the ray of light may get totally reflected, the maximum value of refractive index is:

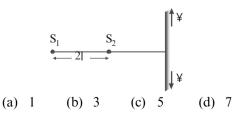
- 23. A tuning fork of frequency 392 Hz, resonates with 50 cm length of a string under tension (T). If length of the string is decreased by 2%, keeping the tension constant, the number of beats heard when the string and the tuning fork made to vibrate simultaneously is:
 - (a) 4 (b) 6 (c) 8 (d) 1
- 24. Hydrogen (H), deuterium (D), singly ionized helium (He+) and doubly ionized lithium (Li++) all have one electron around the nucleus. Consider n = 2 to n = 1 transition. The wavelengths of emiliar and the respectively. Then approximately:

(a | 1 = 12 = 4 | 13 = 9 | 14
) 4 | 1 = 2 | 12 = 2 | 13 = 14
(b | 1 |
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

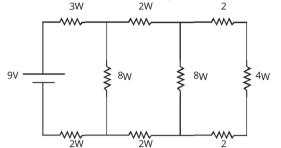
The following figure depict a circular motion. The folius of the circle, the period of revolution, the initial position and the sense of revolution are fidicated on the figure.

The simple harmonic motion of the x-projection of the radius vector of the rotating particle P can be shown as:

(a)
$$x(t) = a\cos\frac{\alpha 2\rho t}{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}}$$
(b)
$$x(t) = a\cos\frac{\alpha \rho t}{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}\ddot{o}}$$

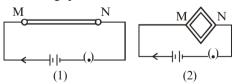

$$\dot{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}}$$

$$x(t) = a\sin\frac{\alpha 2\rho t}{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}}$$

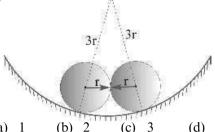

$$x(t) = a\cos\frac{\alpha \rho t}{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}}$$

$$x(t) = a\cos\frac{\alpha \rho t}{\dot{q}} + \frac{\rho\ddot{o}}{\dot{q}}$$

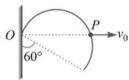
There are two sources kept at distances 21. A large screen is perpendicular to line joining the sources. Number of maximas on the screen in this case is (l = wavelength of light)


27. In the circuit shown in figure th'e current through A body moves in a circular orbit of radius R

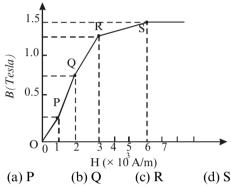
- (a) the 3 W resistor is 0.50 A.
- (b) the 3 W resistor is 0.25 A.
- (c) the 4 W resistor is 0.50 A
- (d) the 4 W resistor is 0.25 A.
- 28. A telescope has an objective lens of 10 cm diameter and is situated at a distance of one kilometer from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is 5000 Å, is of the order of 33.
- (a) 5 cm (b) 0.5 m (c) 5 m (d) 5 mm 29. During vapourisation
 - change of state from liquid to vapour state
 - temperature remains constant.
 - both liquid and vapour states coexist in equilibrium.
 - specific heat of substance increases.


Correct statements are

- (a) I, II and IV
- (b) II, III and IV
- (c) I, III and IV
- (d) I, II and III
- 30. A wire is connected to a battery between the point M and N as shown in the figure (1). The same wire is bent in the form of a square and then connected to the battery between the points M and N as shown in the figure (2). Which of the following quantities increases?


- Heat produced in the wire and resistance (a
- offered by the wire.
- (b Resistance offered by the wire and current
- through the wire.
- (c) Heat produced in the wire, resistance offered
- by the wire and current through the wire.
- Heat produced in the wire and current through the wire.

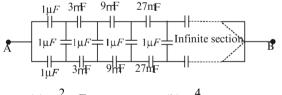
- under the action of a central force. Potential due to the central force is given by V(r) = kr(k is a positive constant). Period of revolution of the body is pro- portional to:
- (a) R1/2 (b) R-1/2 (c) R-3/2 (d) R-5/2Two equal heavy spheres, each of radius r, are in equilibrium within a smooth cup of radius 3r. The ratio of reaction between the cup and one sphere and that between the two sphere is


- (b) (c) (d) 4 (a) 1 A long, hollow conducting cylinder is kept coaxially inside another long, hollow conducting cylinder of larger radius. Both the cylinders are initially electrically enful raifference appears between the two cylinders when a charge density is given to the inner cylinder. A
- (b) potential difference appears between two cylinders when a charge density is given to the outer cylinder. No potential
- difference appears between the two cylinders when a uniform line charge is kept along the axis of the cylinders. No
- potential difference appears between the two cylinders when same charge density is given to both the cylinders.

A thin but rigid semicircular wire frame of radius r is hinged at O and can rotate in its own vertical plane. A smooth peg P starts from On the lifting the frame upward as shown in figure.

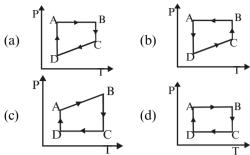
Find the angular velocity w of the frame when its diameter makes an angle of 60° with the vertical; (b) v0/2 r(c) 2 v0/r(d) v0r

- 35. Given that A + B = R and A = B = R. What should be the angle between A and B?
 - (a) The basicp/magnetization curious for a
- 36. ferromagnetic material is shown in figure. Then, the value of relative permeability is highest for the point

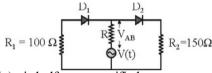


- 37. Five gas molecules chosen at random are found to have speeds of 500, 600, 700, 800 and 900 m/s:
 - The root mean square speed and the
 - average speed are the same.
 - The root mean square speed is 14 m/s higher than the average speed.

The root mean square speed is 14 m/s lower $\frac{41}{1}$. than the average speed.


The root mean square speed is Ö14 m/s higher than the average speed.

38. What is equivalent capacitance of circuit between points A and B?



- (c)
- (d) (J+3)mF
- 39. A cyclic process ABCD is shown in the figure P_{AA} V diagram. Which of the following curves represent the same process

In the circuit given below, V(t) is the sinusoidal voltage source, voltage drop XB(t) across the resistance R is

- is half wave rectified (a)
- (b) is full wave rectified
- has the same peak value in the positive and negative half cycles
- has different peak values during positive and negative half cycle

PART - II : CHEMISTRY

- Which of the following can be repeatedly soften on heating?
- (i) Polystyrene
- (ii) Melamine
- (iii) Polyesters
- (iv) Polyethylene
- (v) Neoprene
- (a) (**(i)**) and (iii)
- (i) and (iv)
 - (iii), (iv) and (v) (ii) and (iv)
- 42. Which one of the following complexes is an outer orbital complex?
 - (a) $[Co(NH_3)6\beta^+]$
- (b) $[Mn(CN)6]^{4}$
- (c) [Fe(CN) §4–
- (d) [Ni(NH3)6]²⁺
- For the reaction **4**(g) + Br2 (g) ® 2HBr (g), the experimental data suggest, rate = $k_1^2 \text{HB} \text{r}^{2}$.

The molecularity and order of the reaction are respectively $2,\frac{3}{2}$ (b) $\frac{3}{2},\frac{3}{2}$

- (c) 1, 1
- Dead burn plaster is
- (a) CaSO4.2H2Q
- (b)MgSO4. 7H2O
- (c) CaSO
- (d) CaSO4
- 45. Stronger is oxidising agent, more is
 - standard reduction potential of that species
 - the tendency to get it self oxidised the tendency to lose electrons by that (b species
 - standard oxidation potential of that species

46. Which of the following relation represents 52. correct relation between standard electrode potential and equilibrium constant?

I.
$$logK = \frac{nFE^{\circ}}{2.303 RT}$$

II.
$$K = e^{RT}$$

III.
$$logK = 2.303 \text{ RT}$$

$$\log K = 0.4342 \frac{\text{nFE}^{\circ}}{}$$

Choose the correct statement(s).

- (a) I, II and III are correct
- (b) II and III are correct
- (c) I, II and IV are correct
- (d) I and IV are correct
- 47. Which of the following shows nitrogen with its increasing order of oxidation number?

(a NO
$$\leq$$
 NO \leq NO \leq NO \leq NO \leq NH+₄

$$(b)$$
 NH₄+ < NO < NO₂< NO-3 < NO

$$NH_4 + NO < NO < NO < NO\bar{3}$$

(c)
$$NH_4 + < NO < NO < NO_2 < NO_{\overline{3}}$$

48. Raoult's law becomes a special case of Henry's

$$(a)$$
 $KH < p^{\circ}$

(c) $K^H; p^{\circ}_1$

49. È for the cell, Zn | Zn2+ (aq) | Cu2+ (aq) | Cu5th 1.10 V at 25°C. The equilibrium constant for the cell reaction

$$Zn+Cu2+(aq)$$
 \longleftarrow $Cu+Zn2+(aq)$

is of the order of

- (a) 10-37 (b) 1037 (c) 10-17 (d) 1017
- 50. Which of the following represents Gay Lussac's law?

$$I_{II}$$
. $\frac{P}{T} = constant$

II.
$$P_1T = P_2T_2$$

$$P1V1 = P2V2$$

Choose the correct option.

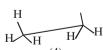
- (a) I, II and III
- (b) II and III
- (c) I and III
- (d) I and II
- 51. For the reaction $CO(g) + \frac{1}{2}O2(g) \otimes CO2(g)$

Which one of the statement is correct at constant T and P?

- (a) DH = DE
- (b) DH < DE
- (c) DH > DE
- (d) DH is independent of physical state of the reactants

- 52. The energy of an electron in second Bohr orbit of hydrogen atom is:
 - (a) (c) Which Orl PheV following 44 real 0-19 cal is wrong $4 \times 10-19$ kJ) $-5.44 \times 10-19$ J
 - . (a) NH (d

$$3 < PH3 < AsH3 - Acidic$$


(b)Li
$$\leq$$
 Be \leq B \leq C — IE

- (c) Al 2O3 < MgO < Na2O < K2O Bacic
- (d)Li+ < Na+ < K+ < Cs+ Ionic radius
- 54. Which of the following is not involved in the formation of photochemical smog?
 - (a) Hydrocarbon
- (b) NO
- (c) SO^{-2}
- a not procent i
- 55. Which of the following is not present in Portland cemen t?
 - (a) Ca3SiQ4₂)2 (c) Ca
- (a) Ea3Ai2&6
- 6. Which of the following can form buffer solution?
 - (a) aq.NH3+NH4OH (b) KOH+HN0
 - (c) NaOH+HCl (d) KI+KOH
- 7. Which of the following complex shows sp3d2 hybridization?
 - (a) [Cr(NO)] B-
- (a) [Fr(Ed)4]¹⁻
- (c) [CoF6]3-
- Which has glycosidic linkage?
- (a) amylopectin
- (b) amylase
- (c) cellulose
- (d) all of these
- Which of the following represents Schotten-Baumann reaction?
- (a formation of amides from amines and acid
-) chlorides/NaOH

 (b. formation of aminos from am
- (b formation of amines from amides and
 - Li Al H

60.

- (c) formation of amines from amides and Br
- the handwing structures, which two forms are formationer devolves from the structures.

- (a) 1 and 4
- (b 2 and 3
- (c) 1 and 2
-) 1 and 3 (d

61.	Which of the following shows correct order of 72. bond length?	Which of the following does not contain Plane of symmetry?		
	(a $O_2^2 > O_2 > O_2^2$	(a trans-1,3 dichloro		
	$0^{2} < 0^{2} > 0^{2} < 0^{2} = 0^{2}$) cyclohexane trans-1,2		
	(b $O_2^2 > O_2 < O_2^2 > O_2^2$	(b dichloro cyclohexane cis-1,2		
	$) O2 > O2 < O2 > O2^{2}2-$) dichloro cyclohexane trans-		
62	The number of radial nodes of 3s and 2p orbitals 3.	Cadiniany requentan nuclear reactors for?		
02.	are respectively	a) absorbing neutrons		
	(a) 2,0 (b) 0,2 (c) 1,2 (d) 2,2	(b) cooling		
63.	If a 25.0 mL sample of sulfuric acid is titrated	(c) release neutrons		
	with 50.0 mL of 0.025 M sodium hydroxide	(d) increase energy		
	to a phenolphthalein endpoint, what is the 74.	Which reagent converts nitrobenzene to N-		
	molarity of the acid?	phenyl hydroxyamine?		
	(a 0.020 (b)0.100 M	(a) Zn/HCl (b) H 2O2		
) M (d)0.050 M	(*) == 202		
64.	Find which of the following compound can have	(c) Zn/NH 4Cl (d) LiAlH4		
	mass vatios of C:H:O as 6:1:24 75.	Which of the following can act as both Bronsted		
	(a) HO-(C=O)-OH (b) HO-(C=O)-H	acid and Bronsted base?		
	(c) H-(C=O)-H (d) H 3CO-(C=O)-H	(a) Na 2CO3 (a) \mathbb{Q}_{13}^{+}		
65.	The number of atoms per unit cell of bcc structure	(c) HCO –		
	is 76.	Identify the structure of water in the gaseous		
	(a) 1 (b) 2 (c) 4 (d) 6	phase.		
66.	Which of these doesn't exist?	(a) +		
	(a) PH ³ (b) PH5 (c) LuH3 (d) PF5	$H - \stackrel{\cdot \cdot \cdot}{O} - H$ (p) $H - O - H$		
67.	Which of these compounds are directional?	7d- 0 H		
	(a) NaCl (b) CO ² (c) BaO (d) CsCl2	H - O - H (b) $H - O - H$ H (c) $H - O - H$ H H (d) None of these		
68.	For a given reaction, $\overrightarrow{DH} = 35.5 \text{ kJ} \text{ mol-1}$ and $\overrightarrow{DS} =$			
	83.6 JK-1 mol-1. The reaction is spontaneous at ://.	Electrometallurgical process is used to extract		
	(Assume that DH and DS do not vary with	(a) I'C (b) I'U (c) Na (u) Ag		
	tempear at ur e) 78.	The correct statement about the compounds A,		
	(a) $T > 425 \text{ K}$ (b) All temperatures	B, and C		
	(c) $T > 298 \text{ K}$ (d) $T < 425 \text{ K}$	соосн соон соон		
69.	Specific conductance of 0.1 M HA is $3.75 \times 10-4$	Н ОН Н ОН		
	ohm-1 cm-1. If $1 \text{ (HA)} = 250 \text{ ohm-1 cm2 mol-1, t}$	heH OH HO H is		
	dissociation constant K of HA is:	соон соосң соосң		
	(a) $1.0 \times 10-5$ (b) $2.25 \times 10-4$	$(A) \qquad (B) \qquad (C) \qquad ^{3}$		
	(a) 1.0×10^{-5} (b) 2.25×10^{-1} (c) 2.25×10^{-13}	(a A and B are identical A		
70	The rate of reaction between two reactants A) and B are diastereomers		
70.	and B decreases by a factor of 4 if the	(b A and C are enantiomers		
	concentration of reactant B is doubled. The) A and B are enantiomers		
	order of this reaction with respect to reactant79.	© rrect formula of the complex formed in the		
	B is:	hardown ring test for nitrates is		
	(a) 2 (b) -2 (c) 1 (d) -1	(a) FeSO. NO (b) [Fe(H2O)5NO]+		
71.	A compound of molecular formula of C7H16	(c) [Fe(H Q) NO]+ (d) [Fe(H Q) NO]3+		
	shows optical isomerism, compound will be 80.	Which one of the following is an amine hormone?		
	(a) 2, 3-Dimethylpentane	(a) Thyroxine (b) Oxypurin		
	(b) 2,2-Dimethylbutane	(c) Insulin (d) Progesterone		
	(c) 3-Methylhexane	(2)		
	(d) None of the above			

PART - III (A): ENGLISH PROFICIEN

DIRECTIONS (Os. 81): In the following question, out of the four alternatives, choose the one which best expresses the meaning of the given word.

- 81. Loquacious
 - (a) Talkative
- (b) Slow
- (c) Content
- (d) Unclear

DIRECTIONS (Qs. 82): Choose the word opposite in meaning to the given word.

- 82. Meticulous
 - (a) Forgetful
- (b) Destructive
- (c) Careless
- (d) Flagrant

you have two brief passages with 5 questions in each of the four. passage. Read the passage carefully and choose the 87 best answer to each question out of the four alternatives.

PASSAGE-I

To write well you have to be able to write clearly and logically, and you cannot do this unless you can think clearly and logically. If you cannot do this yet you should train yourself to do it by taking particular. problems and following them through, point by poin PIRECTIONS (Qs. 89-90): In questions, some parts to a solution, without leaving anything out and without he sentences have errors and some are correct. avoiding any difficulties that you meet.

At first you find clear, step-by-step thought very difficult. You may find that your mind is not able togo concentrate. Several unconnected ideas may occur together. But practice will improve your ability to 90 concentrate on a single idea and think about it clearly and logically. In order to increase your vocabulary and to improve your style, you should read widely and use a good dictionary to help you find the exact PART - III (B): LOGICAL REASONIN meanings and correct usages of words.

Always remember that regular and frequent practice is necessary if you want to learn to write well. It is no good waiting until you have an inspiration before you write. Even with the most famous writers, inspiration is rare. Someone said that writing is ninetynine percent hard work and one percent inspiration, so the sooner you get into the habit of disciplining vour-self to write, the better.

- To write well, a person must train himself in
 - (a) (bleatingdy ithi tial if fituit diffiteleth
 - to write bear aimse anything out

thinking clearly and logically following a step-by-step approach

84.

- a good dictionary is not used (a
- ideas occur without any sequence
- aids to correct writing are not known (b exact usages of words are not known
- (c)
- (d

- According to the passage, writing style can be improved by
 - thinking logically
 - writing clearly
 - (h undergoing training
 - reading widely
- 86. Famous writers have achieved success by
 - using their linguistic resources properly
 - disciplining their skill
 - following only one idea
 - waiting for inspiration

DIRECTIONS (Qs. 87-88): In questions below,

sentences are given with blanks to be filled in with an appropriate word (s). Four alternatives are suggested

DIRECTIONS (Qs. 83 - 86): In the following questions, each question. Choose the correct alternative out

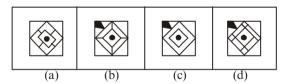
China is a big country, in area it is bigger than any other country _ Russia. (b) except (a) accept

- (d) access
- (c) expect The treasure was hidden
 - a big shore.
- (a) on
- (b) underneath
- (c) toward
- (d) off

Find out which part of a sentence has an error. If a sentence is free from error, mark (d) in your Answer.

My father gave me (a) / a pair of binocular (b) /

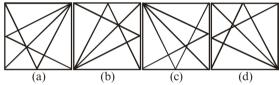
on my birthday. (c) / No error. (d)


The teacher as well as his students, (a) / all left (b) / for the trip. (c) / No error. (d)

Which answer figure complete the form in question figure?

Question figure:

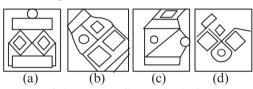
Answer figures:



DIRECTIONS (Q. 92): In the following question which answer figure will complete the question figure?

92. Question figure:

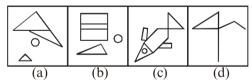
Answer figures:



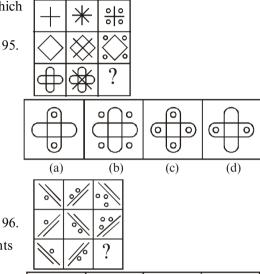
93. Which answer figure includes all the components given in the question figure?

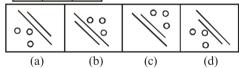
Question Figure :

Answer figures:



94. Which of the answer figures include the separate components found in the question figure?


Question figure:



Answer figures:

DIRECTIONS (Qs. 95-96): Select a suitable figure from the four alternatives that would complete the figure matrix.

97. M is the son of P. Q is the grand daughter of O who is the husband of P. How is M related (a) O'Son (c) Mother (by iDadghter oduces Vishal as the son of (h) Foothye brother of

98. his father's wife. How is Vinod related to Vishal?

(a) Cousin

(b) Brother

(c) Son

(d) Uncle

AGMSY, CIOUA, EKQWC, ? IOUAG, KQWCI

(a) GMSYE

(b) FMSYE

(c) GNSYD

(d) FMYES

100.(?), PSVYB, EHKNQ, TWZCF, ILORU

(a) BEHKN

(b) ADGJM

(c) SVYBE

(d) ZCFIL

DIRECTIONS (Qs. 101): In the following question, one statement is given followed by two assumptions I and II. You have to consider the statement to be true even if it seems to be at variance from commonly known facts. You have to decide which of the given assumptions, if any, follow from the given statement.

101. Statements: Politicians become rich by the votes

of the people.

Assumptions:

- I. People vote to make politicians rich.
- II. Politicians become rich by their virtue.
- (a) Only I is implicit
- (b) Only II is implicit
- (c) Both I and II are implicit
- (d) Both I and II are not implicit

102. Two statements are given followed by four conclusions, I, II, III and IV. You have to consider the statements to be true, even if they seem to be at variance from commonly known facts. You have to decide which of the given conclusions can definitely be drawn from the given statements. Indicate your answer. Statements:

(A)No cow is a chair

(B) All chairs are tables.

Conclusions:

- I. Some tables
- II. chairs. Some tables
- III. are cows Some chairs
- IV. are cows No table is
- (a) a cow
- (b) Either II or III
- (c) follow
- (d) Either II or IV follow Only I follows

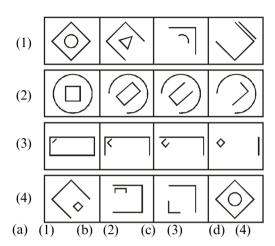
DIRECTIONS (Osh \$603-104): In questions one/two statements are given, followed by two conclusions I and II. You have to consider the statements to be true, even if they seem to be at variance from commonly known facts. You have to decide which of the given conclusions, if any follow from the given statement.

103.Statements:

- Temple is a place of worship.
- Church is also a place of worship.

Conclusions:

- Hindus and Christians use the same place for worship.
- II. All churches are temples.
- (a) Neither conclusion I and II follows
- (b) Both conclusions I and II follow
- (c) Only conclusion I follows
- (d) Only conclusion II follows


104.Statement:

The human organism grows and develops through stimulation and action.

Conclusions:

- Inert human organism cannot grow and (a) devel op.
- (b) Human organisms do not react to
- (c) stimulation and action.
- (d) Neither conclusion I nor II follows Both conclusions I and II follow Only conclusion I follows Only conclusion II follows
- 105. Choose the set of figure which follows the given

Rule: Closed figures gradually become open and open figures gradually become closed.

PART - IV : MATHEMATICS

106. Let f and g be functions from R to R defined as

$$f(x) = \begin{cases} \frac{1}{1}7x^2 + x - 8, x \notin 1 & \frac{1}{1}|x|, x < -3 \\ = \frac{1}{1}4x + 5, 1 < x \notin 7, g(x) = \frac{1}{1}0, -3 \notin x < 2 \\ \frac{7}{1}8x + 3, x > 7 & \frac{7}{1}x^2 + 4, x^3 2 \end{cases}$$

Then

- (a) (fog)(-3) = 8
- (b) (fog)(9) = 683
- (c) (gof)(0) = -8
- (d) (gof)(6) = 427
- 107. How many different nine digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even positions?
 - (a) 16 (b) 36
- (c) 60
- (d) 180

108. If
$$\underset{k=1}{\overset{n}{a}} k(k+1)(k-1) = pn4 + qn3 + tn2 + sn$$
,

where p, q, t and s are constants, then the value of s is equal to

(a) $-\frac{1}{4}$ (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$

109. The length of the semi-latus rectum of an ellipse is one thrid of its major axis, its eccentricity

- be (a) $\frac{\sqrt{2}}{3}$ (b) $\sqrt{\frac{2}{3}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{2}}$ 110. If a and b are roots of the equation

$$x^{2} + px + \frac{3p}{4} = 0$$
, such that |a-b|= $\sqrt{10}$, then

p belongs to the set:

- (a) $\{2, -5\}$
- (b) $\{-3, 2\}$
- (c) $\{-2, 5\}$ (d) $\{3, -5\}$

- 111. Given the system of straight lines a(2x + y 118). After striking the floor a certain ball rebounds 3) + b(3x + 2y – 5) = 0, the line of the system situated farthest from the point (4, -3) has the equation y - 15 = 0 (b 7x + y - 8 = 04x + 3y - 7 = 0) 3x - 4y + 1 = 0
- 112. One mapping is selected at random from all mappings of the set S)= $\{1, 2, 3, \dots, n\}$ into

The probability that it is one-one is $\frac{3}{2}$. Then the value of n is 32

- (a) 3
- (c) 5
- (d) 6
- 113. The integer just greater than $(3+\sqrt{5})2n$ is divisible by (n Î N)
 - (a) 2n-1
- (b) 2n+1
- (c) 2n+2
- (d) Not divisible by 2
- 114. The domain of the function
 - $f(x) = \sin 1 \frac{1}{1} \log 2c \frac{e}{x} + \sin 1 \frac{1}{1} \sin 2c \frac{e}{x} + \sin 1 \frac{1}{1} \sin 2c \frac{e}{x}$
 - (a) (b) The marks [bbtamed by 260 students in a certain-test and hiten below (-2, -1) E
- (d (1, 2))115.

Marks	No. of students	Marks	No. of
Iviaiks	Students	IVIAIKS	students
10-20	2	60-70	12
20-30	3	70-80	14
30-40	4	80-90	10
40-50	5	90-100	4
50-60	6		

Median of the above data is

- (a) 68.33
- (b) 70
- (c) 68.11
- (d) None of these
- 116. If A, B, C are the angles of a triangle and

eiA,eiB,eiC are in A.P. Then the triangle must

be

- (a) right angled
- (b) isosceles
- (c) equilateral
- (d) None of these
- 117. An observer on the top of a tree, finds the angle of depression of a car moving towards the tree to be 30°. After 3 minutes this angle becomes 60°. After how much more time, the car will reach the t r ee?
 - (a) 4 min.(b) 4.5 m (c) 1.5 min(d) 2 min.

 $\frac{4}{5}$ th of its height from which it has fallen. The total distance that the ball travels before coming to rest if it is gently released from a height of 120m is

- (a) 960 m
- (b) 1000 m
- (c) 1080 m
- (d) Infinite
- 119. An equilateral triangle is inscribed in the circle $x^2 + y^2 = a^2$ with one of the vertices at (a, 0). What is the equation of the side opposite to this vertex?
 - (a) 2x a = 0
- (b) x + a = 0
- (c) 2x + a = 0
- (d) 3x 2a = 0
- 120. The function $f(x) = x |x x^2|$, $-1 \pounds x \pounds 1$ is continuous on the interval
 - (a) [-1, 1]
- (b) (-1, 1)
- (c) $\{-1, 1\} \{0\}$
- (d) $(-1, 1) \{0\}$
- 121. $\frac{\text{if}}{(a)} \frac{4n}{n+1} < \frac{(2n)!}{(n!)2}$, then P(n) is true for
 - n > 0 (c) n < 0 (d) $n^3 2$
- 122. If a system of equation -ax + y + z = 0x - by + z = 0

x + y - cz = 0 (a, b, c¹-1) has a non-zero solution then

If f(x) = xx, then f(x) is increasing in interval:

- (b) 1
- (c) 2
- (d) 3

123.

- $\begin{pmatrix} b \\ d \end{pmatrix}$ $\begin{bmatrix} 0, \frac{1}{e} \end{bmatrix}$ None of these

124. If x is real number, then $\frac{x}{x^2-5x+9}$ must lie

- (a) $\frac{1}{1}$ and 1 (b) -1 and $\frac{1}{1}$
- (c) -11 and 1
- (d) $-\frac{1}{11}$ and 1
- 125. The value of

$$\lim_{x \in \mathbb{R}} \xi^{a_1^{1/x} + \frac{1}{2^t}x} + \dots + a_n^{1/x} \ddot{o}^{nx}$$

 $a_i > 0$, $i = 1, 2, \dots, n$, is

- (a) $a_1 + a_2 + \dots + a_n$
- (b) $ea1 + a2 + \frac{1}{4}an$

$$\stackrel{\text{(c)}}{\text{(d)}} \ \frac{a_1 \! + \! a_2 \! + \! \dots \! + \! a_n}{n} \\ a_1 \! a_2 \! a_2 \! \dots \! a_n \\$$

126. The value of cot–1 7 + cot–1 8 + cot–1 18 is 134.	Let A, B, C be finite sets. Suppose that n (A)		
(a) p (b) $\stackrel{p}{\rightarrow}$	= 10, n (B) = 15, n (C) = 20, n (A ζ B) = 8 and n (B ζ C) = 9. Then the possible value		
(a) p (b) $\frac{p}{2}$ (c) $\cot -1.5$ $\cot -1.3$	Qf)n $(A \times B \times C)$ is (b) 27		
$ \begin{array}{c} \text{If } Q_{\text{osx-1}} \\ 127. \\ \text{(c)} \frac{\text{(a)}}{\text{sinx+1}} e^{\text{ex}} \text{dxis equal to} : \end{array} $	(c) 28(d) Any of the three values 26, 27, 28 is possible		
$\frac{12}{(c)} \frac{c}{\sin x+1} = \frac{c}{\cos x} \cos x = \frac{12}{(c)} \cos x$	7 - z		
$ \frac{e_1^x \cos x}{+\sin x} + C \qquad \text{(b)} C - \underbrace{e_1^x + \sin x}_{\text{C}} \qquad 135. $	If $f(z) = \frac{1}{1 - z^2}$, where $z = 1 + 2i$, then $ f(z) $ is		
(d) C-	equal to:		
$(d) C = \frac{e^{x}}{1 + \sin x}$ $C = \frac{e^{x}}{1 + \sin x}$ $C = \frac{e^{x} + \sin x}{1 + \sin x}$	(a) $\frac{ z }{z}$ (b) $ z $		
1+sinx 128. A random variable X has the probability	(a) $\frac{ z }{2}$ (b) $ z $ (c) $2 z $ (d) None of these		
distribution			
X 1 2 3 4 5 6 7 8 136.	If $f(x) = \cos \frac{\text{\'e}1 - (\log x)2}{\text{\'e}\hat{e}1 + (\log x)2}\hat{u}$ then the value of $f \notin (e)$		
	ee1+(logx)2uu		
For the events $E = \{X \text{ is a prime number}\}\ $ and $F = \{X < 4\}\ $ then $P(E \to F)$ is	is equal to		
() 0.50 (1) 0.77 () 0.25 (1) 0.07	(a) 1 (b) $\frac{1}{e}$ (c) $\frac{2}{e}$ (d) $\frac{2}{2e}$		
(a) 0.50 (b) 0.77 (c) 0.35 (d) 0.87 129. The number of roots of equation $\cos x + \cos 2x + \cos 3x = 0$ is $(0 \text{£} x \text{£} 2 p)$	Spannedight number divisible by 3		
(a) 4 (b) 5 (c) 6 (d) 8 130. The area under the curve $y = \cos x - \sin x $,	is to be formed using the digits 0, 1, 2, 3, 4 and 5		
130. The area under the curve $y = \cos x - \sin x $,	with repetition. The total number formed are 216. Statement 2: If sum of digits of any number is		
Of $x \in \frac{p}{2}$, and above x-axis is:	divisible by 3 then the number must be divisible		
	by 3.		
(a) $2\sqrt{7}$ (b) $2\sqrt{7}-2$ (c) $2\sqrt{7}+2$ (d) 0	(a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for		
•	Statement -1		
131. If $f(x) = \ \frac{\int x \log \cos x}{\log(4x^2)} \ $, $x = 0$ then $f(x)$ is	(b) Statement -1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation		
$\frac{1}{1} 0 \qquad , x = 0$	for Statement-1		
(a) continuous as well as differentiable at $x = 0$	(c) Statement-1 is true, Statement-2 is false (d) Statement-1 is false, Statement-2 is true		
(b) continuous but not differentiable at $x = 0$ 138	(d) Statement-1 is false, Statement-2 is true The equation of one of the common tangents to		
 (c) differentiable but not continuous at x = 0 (d) neither continuous nor differentiable at 	the parabola $y2 = 8x$ and $x2+y2-12x+4=0$		
$\mathbf{x} = 0$	is (a) $y = -y + 2$ (b) $y = y - 2$		
132. The maximum value of $z = 3x + 2y$ subject to $x + 2y^3 2$, $x + 2y £ 8$, $x, y^3 0$ is :	(a) $y = -x + 2$ (b) $y = x - 2$ (c) $y = x + 2$ (d) None of these		
(a) 32 (b) 24	é cost sintù		
(c) 40 (d) None of these 139.	If R (t) = \hat{e} costúû then R(s) R(t) equals		
133. A cylindircal gas container is closed at the top and open at the bottom. if the iron plate of the top	(a) $R(s+t)$ (b) $R(s-t)$		
5	(c) $R(s) + R(t)$ (d) None of these		
is 4 time as thick as the plate forming the	If =		
cylindrical sides. The ratio of the radius to the height of the cylinder using minimum material for			
the same capacity is	+ C, then		
(a) $\frac{2}{3}$ (b) $\frac{1}{2}$ (c) $\frac{4}{5}$ (d) $\frac{1}{3}$	(a) $f(x) = \frac{1}{2}x^2$ (b) $g(x) = \log x$ (d) None of these		
(a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{5}$ (d) $\frac{1}{3}$	L = 1		

- 141. Let a,b&c be non-coplanar unit vectors equally inclined to one another at an acute angle q. Then | [abc] in terms of q is equal to
 - (a) $(1+\cos q) \sqrt{\cos 2q}$
 - (b) $(1+\cos q) \sqrt{-2\cos q}$
 - (c) (1-cosq) 1/2cosq
 - (d) None of these
- 142. 21/4. 22/8. 23/16. 24/32.....¥ is equal to-
 - (a) 1
- (c) 3/2
- 143. If $\sum_{r=0}^{n} \frac{1}{r} = \frac{1}{r+3} \frac{3}{2}$, then a n is equal to
 - (a) 0
- (c) 2
- (d) None of these
- 144. If $\begin{vmatrix} p & q-y & r-z \\ p_-x & q & r \\ p_-x & q_-y & r \end{vmatrix} = 0$, then the value of

$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z}$$
 is

- (a) 0 (b) 1 (c) 2 (d) 4pqr
- 145. An urn contains five balls. Two balls are drawn and found to be white. The probability that all the balls are white is

 - (a) $\frac{1}{10}$ (b) $\frac{3}{10}$ (c) $\frac{3}{5}$ (d) $\frac{1}{2}$

- 146. The ratio in which the join of (2, 1, 5) and (3, 4, 3) is divided by the plane $(x + y - z) \frac{1}{2}$ is:
 - (a) 3:5 (b) 5:7 (c) 1:3 (d) 4:5

147. Value of
$$\int_{0}^{p/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 is

- (a) $\frac{p}{2}$
- (b) $\frac{-p}{2}$
- (c) p
- (d) None of these
- 148. The dot product of a vector with the vectors $i+j^2-3k^2$, $i^2+3j^2-2k^2$ and $2i^2+j^2+4k^2$ are 0, 5 and

8 respectively. The vector is

- (a) $i^+2i^+k^-$
- (b) $-i^+3i^-2k^-$
- (c) $i^+2i^+3k^-$
- (d) $i^-3i^-3k^-$
- 149. The angle between the lines whose intercepts on the axes are a, -b and b, -a respectively, is
- (a) $\tan^{-1} \frac{a^2 b^2}{ab}$ (b) $\tan^{-1} \frac{b^2 a^2}{2}$ (c) $\tan^{-1} \frac{b^2 a^2}{2ab}$ None of these

150. If the line through the points A (k, 1, -1) and B (2k, 0, 2) is perpendicular to the line through the points B and C (2 + 2k, k, 1), then what is the value of k?

- (a) -1
- (b) 1
- (c) -3
- (d) 3

SOLUTIONS

PART - I: PHYSICS

(a) As we know,

Gravitational potential energy = $\frac{-GMm}{r}$

and orbital velocity, $y = \sqrt{\frac{GM}{(R+h)}}$

$$=\sqrt{\frac{GM}{(R+2R)}}=\sqrt{\frac{GM}{3R}}$$

 $Ef = \frac{1}{2}mv20 \frac{GMm}{3R} = \frac{1}{2}m\frac{GM}{3R} - \frac{GMm}{3R}$

$$=\frac{GMm}{3R} \stackrel{-}{\underbrace{\epsilon}_{2}} \stackrel{-}{\underbrace{0}}_{\cancel{\varphi}} = \frac{-GMm}{6R}$$

$$Ei = \frac{-GMm}{R} + K$$

Therefore minimum required energy,

- $K = \frac{5GMm}{6R}$ (a) W = TDA = 4pR2T(n1/3 1)= $4 \times 3.14 \times (10-2)2 \times 460 \times 10-3 [(106)1/3 1]$
- 3. (c) $\frac{1}{f_1} = \frac{\cancel{\text{m}} \cdot 3 \ddot{0} \cancel{\text{m}} \cdot 1}{\cancel{\text{m}} \cdot \cancel{\text{m}} \cdot \cancel{\text{m}}} \frac{1}{25} \ddot{0} = \frac{1}{50}$, $\frac{1}{f_2} = \frac{\cancel{e}}{\cancel{e}_3} \frac{4 - 0\cancel{e}}{\cancel{e} + 25} + \frac{1}{20\cancel{e}} \frac{\cancel{e}}{\cancel{e}} = \frac{3}{100}$

and
$$\frac{1}{f^3} = \frac{\cancel{x} \cdot 3 - 0\cancel{x}}{\cancel{x}^2} \frac{1}{\cancel{x}^2} \frac{1}{\cancel{x}^2} \frac{0}{\cancel{x}^2} \frac{1}{\cancel{x}^2} \frac{1}{\cancel{x}^2} \frac{1}{\cancel{x}^2}$$

$$\frac{1}{f} = \frac{1}{f1} + \frac{1}{f2} + \frac{1}{f3}$$

 $= -\frac{1}{50} + \frac{3}{100} \quad \frac{1}{40}$

(b) When a charged particle enters a magnetic field at a direction perpendicular to the direction of motion, the path of the motion is circular. In circular motion the direction of velocity changes at every point (the magnitude remains constant).

Therefore, the tangential momentum will change at every point. But kinetic energy

will remain constant as it is given by wv2 and v2 is the square of the magnitude of velocity which does not change.

(b) 5.

$$N=N0$$
 $\underset{\xi = \dot{0}}{\text{ad}} \overset{\circ}{\overset{\circ}{\circ}}$

or Half life

$$\frac{N_0}{16} = N0 \underset{\xi^{\frac{3}{2}} = \emptyset}{\text{em}} \ddot{g}^{0}$$

$$n = 4$$

$$t_{1/2} = -h^2 = \frac{1}{4} = \frac{1}{2}h$$

(a) The charging of inductance given by, 6.

$$i = i0 \stackrel{Rt}{Q} - e \stackrel{Rt}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}$$

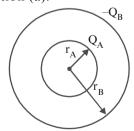
Taking log on both the sides.

$$-\frac{Rt}{L} = \log 1 - \log 2$$

$$P_t = \frac{L}{\log 2} = \frac{300'10^{-3}}{0.69}$$

 $\mathbf{p} \ \mathbf{t} = 0.1 \ \text{sec.}$

7. (a) For,
$$r < R$$
, $E = 0$


$$r = r_A$$
 $E = \frac{1}{4p \hat{l}_0} \frac{Q_A}{r_A^2}$.

$$r_{A} < r < r_{B}$$
 $E = \frac{1}{4p \hat{l}_{0}} \frac{Q_{A}}{r^{2}}$

$$r = r_{\!_{B}} \qquad \qquad E = \frac{1}{4 \text{plg}} \underbrace{\text{QA-QB}}_{\text{Oer}_{B}} \overset{\circ}{\underset{\text{o}}{\rightleftharpoons}} \frac{}{\stackrel{\circ}{\bowtie}}.$$

$$= - \frac{1}{\sqrt[4]{\frac{e}{p}}} \frac{QB - Q_A \ddot{o}}{\sqrt[4]{p}} \frac{\dot{e}}{r_B^2} \frac{\dot{e}}{\cancel{o}}$$

These values are correctly represent in option (a).

8. (b)
$$M = (p2rh)_r = pr \frac{2}{6} \frac{\partial^2 T \cos q}{r rg} \frac{\ddot{o}}{\dot{o}} r$$

and
$$M\phi = (2) r^2 \frac{a^2 T \cos q}{\phi^2 e^2 r^2 r g} \phi$$

9. (a)
$$f = \frac{5}{2l} \sqrt{\frac{F}{m}} = \frac{5}{2l} \sqrt{\frac{9g}{m}}$$
(i)
 \longleftrightarrow $\frac{51/2}{2l} \sqrt{\frac{Mg}{m}}$ (ii)

From above equations, we get M = 25 kg.

or
$$\frac{\text{hc}}{40010^{-9}}$$
 = W9 $\frac{1}{2}$ mv² ... (i)

and
$$\frac{hc}{250'10-9} = W0 + \frac{1}{2}m(2v)2$$
 ... (ii)

On simplifying above equations, we get W0 = 2hc'106J.

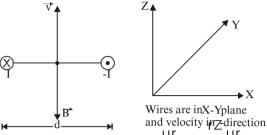
11. (d
$$V = 0$$
, and so $C = V \otimes Y$.

12. Mass of uranium changed into energy)

(d
$$= \frac{0.1}{100}$$
 '1 $= 10-3 \text{ kg}.$

The energy released = mC2 $=10-3 \times (3 \times 108)2$

13. (d) The change in internal energy DUis same in all process.


$$QACBDU + W_{ACB}$$

 $Q = 0$

 $=9 \times 1013 \text{ J}.$

Q = , QABBDU + AEWHere W_{CB} is positive and W_{EB} is negative.
Hence $Q_{ACB} > Q_{ADB} > Q_{AEB}$

14. (c) Dimensions of Y =
$$\frac{1}{1} \frac{1}{1} \frac{$$

15. (d) Net magnetic field due to the wires will be downward as shown below uirn the figure. Since angle between v and B is 180°,

Therefore, magnetic force $\mathbf{H} = \mathbf{q}(\mathbf{v} \cdot \mathbf{B}) = 0$

For projectile A

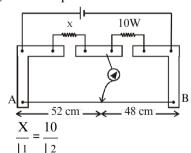
Maximum height, H
$$=\frac{11.2 \sin 2.45^{\circ}}{2g}$$

For projectile B

Maximum height,
$$_{B}H = \frac{u_{B}^{2} \sin 2_{Q}}{2g}$$

As we know,
$$H_{A} = H_{B}$$

 $\frac{u_{A}^{2} \sin^{2}45}{2g} = \frac{\bar{z}_{A}}{\bar{z}_{A}} = \frac{B\sin^{2}q}{2g}$
 $\frac{\sin^{2}q}{\sin^{2}45} = \frac{u_{B}^{2}}{u}$


$$\sin 2 \frac{45}{45} = \frac{1}{u}$$

$$\sin 2 q = \frac{e}{e} \frac{u_A}{u_B} \frac{\ddot{o}^2}{\ddot{o}} \sin 2 45^\circ$$

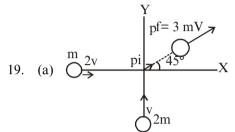
$$\sin^2 \frac{e^{u_B} \emptyset}{e^{u_B}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\sin q = \frac{1}{2}$$
 b $\epsilon = \sin^{-1} \frac{2}{2}$ $\epsilon = \sin^{-1} \frac{2}{2}$ $\epsilon = 30^{\circ}$

17. (b) At Null point

Here 11 = 52 + End correction= 52 + 1 = 53 cm

12 = 48 + End correction = 48 + 2 = 50 cm


$$\sqrt{53} = \frac{10}{50}$$

$$\chi = \frac{X}{53} = \frac{10}{50}$$
 $\chi = \frac{53}{5} = 10.6$ W

18. (a) Total flux through the cubical surface,

$$f = \frac{q_{in}}{\hat{l}_0}$$

$$= \frac{\acute{e}}{\mathring{e}} \frac{3 + 2(+7)}{\hat{l}_0} \mathring{c} C = -\frac{2 C}{\hat{l}_0}$$

Initial momentum of the system

$$p_i = m'2vi^+2m'vj^-$$

$$= (\underline{m'2v})2 + (2m'v)2 \qquad (magnitude)$$

$$=22 \overline{m} v$$

Final momentum of the system = 3mVBy the law of conservation of momentum

$$2\sqrt{2}mv=3mV$$

$$DE = \frac{1}{2}m1V^{2}H + \frac{1}{2}m2V^{2}2 - \frac{1}{2}m1 + m2)V_{combi \text{ ned}}^{2} \quad 25. \quad (a)$$

DE =
$$3\text{mv}2 - \frac{4}{3}\text{mv}2 = \frac{5}{3}\text{mv}2 = 55.55\%$$

- (d) Because of the Lenz's law of conservation of energy.
- 21. (c)We know that

$$Y = \frac{\text{mg/ A}}{\text{DI/I}} = \frac{\text{mgI}}{\text{ADI}} \qquad \dots (1$$

Also $D_{I} = I a DT$

From (1) and (2)

$$Y = \frac{mgl}{AlaDT} = \frac{mg}{A_{aD}T}$$

$$\sqrt{m} = \frac{\text{YAa} \, \text{DT}}{\text{g}} = \frac{10^{-11} \, \text{p} (10 \, 3)2 \, \text{10}^{-5} \, \text{10}}{10} = \text{p} \approx 3$$

22. (a)

١

$$C_{\text{max}} = 60^{\circ}$$

$$rmd = \frac{1}{\sin 60^{\circ}}$$

$$\frac{mg}{m_{\mu}} = \frac{2}{\sqrt{3}}$$

$$= \frac{\sqrt{3}}{2} \cdot 1.5$$

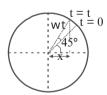
23. (c) The frequency of tuning fork, f = 392 Hz.

Also
$$392 = \frac{1}{2'50} \sqrt{F/m}$$
(i)

After decreasing the length by 2%, we have

$$fc = \frac{1}{2(49)}\sqrt{F/m}$$
(ii)

From above equations,

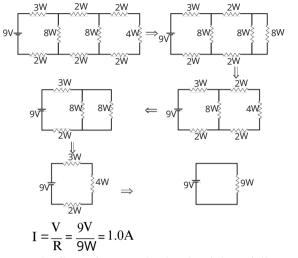

\Beats frequency=8 Hz.

24. (a)
$$Z_1 = 1$$
, $Z_2 = 1$, $Z_3 = 2$ and $Z_4 = 3$.

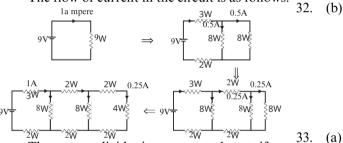
or
$$\frac{4}{3R7}$$

So
$$|1(1)2=12(1)2=13(2)2=1$$
 a(3)

$$11=12=413=914.$$


$$x = a\cos \frac{\partial}{\partial w}t + \frac{\ddot{\mathbf{p}} \div 4\phi}{\partial w}$$

or
$$x = a\cos\frac{2pt}{4} + \frac{p\ddot{o}}{4}$$

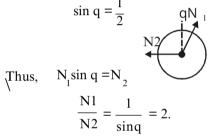

26. (b)
$$\frac{Dx}{max} = 0$$
 and $Dx_{max} = 21$

Theortical maximas are $= 2n + 1 = 2 \times 2 + 1 = 5$ But on the screen there will be three maximas.

27. (d) The net resistance of the circuit is 9W as shown in the following figures.

The flow of current in the circuit is as follows.

The current divides into two equal parts if passes through two equal resistances in parallel.


Thus current through 4W resistor is 0.25 A.

28. (d) Here
$$\frac{x}{1000} = \frac{1.221}{D}$$
or $x = \frac{1.22 \cdot 5 \cdot 103 \cdot 10^{-10} \cdot 10^3}{10^{\circ}10^{\circ}2}$
or $x = 1.22 \times 5 \times 10 - 3 \text{ m} = 6.1 \text{ m}$
x is of the order of 5 mm.

- 29. (d) The change of state from liquid to vapour (for gas) is called vapourisation. It is observed that when liquid is heated, the temperature remains constant untill the ³⁵. entire amount of the liquid is converted into vapour.

 The temperature at which the liquid and the vapour states of the substance coexists is called its boiling point.
- 30. (d)When the wire is bent in the form of a squar36. and connected between M and N as shown in fig. (2), the effective resistance between M and N decreases to one fourth of the value in fig. (1). The current increases four

times the initial value according to the relation V = IR. Since H = I2 Rt, the decrease in the value of resistance is more than compensated by the increases in the value of current. Hence heat produced increases. Percentage loss in energy during the collision; 56% U = mV =

a) When charge is given to inner cylinder, an electric field will be in between the cylinders. So there is potential difference between the cylinders.

 $\frac{x}{\sin 2q} = \frac{r}{\sin(90-q)}$

$$x = 2r \sin q$$

$$\frac{dx}{dt} = 2 r \cos q \cdot \frac{dq}{dt}$$

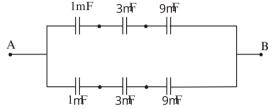
$$\frac{dq}{dt} = \frac{dx/dt}{2r \cos q} = \frac{v_0}{2r \cos 60} = \frac{v_0}{r}$$

$$R^2 = [A^2 + B + 2 AB \cos q]$$

$$= R^2 + R^2 + 2R^2 \cos q$$

$$R^2 = 2R^2 \cos q \text{ or } \cos q = -1/2$$

$$\text{or } q = 2p/3$$


(b) B=m0mrH \triangleright mr μ $\stackrel{B}{H}$ = slope of B-H cu r ve According to the given graph, slope of the graph is highest at point Q.

37. (b)
$$v_{av} = \frac{\acute{e}500 + 600 + 700 + 800 + 900}{\acute{e}} \mathring{u} = \frac{700 \text{m/s}}{5}$$

$$= \sqrt{\frac{5002 + 6002 + 7002 + 8002 + 9002}{5}} = 714 \text{m/s}$$

rms is greater than average speed by 14 m/s.

(b) The effective circuit is shown in figure.

The capacitance of upper series,

$$\frac{1}{C} = \frac{1}{1} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{27}$$

$$C = \frac{2}{3}\mu C$$

Now
$$C_{AB} = 2C = \frac{4}{3} \text{ mF}$$

- 48. 39. (a) Process AB is isobasic and BC is isothermal, CD isochoric and DA isothermic com pr essi on.
- 40. (d) During the operation, either of D and D be in forward bias. Also R and R are different, so output across R will have different peaks.

PART - II: CHEMISTRY

- 41. (b) Polystyrene and polyethylene belong to the category of thermoplastic polymers which are capable of repeatedly softening on heating and harden on
- cooling. Hybridisation:

$$\begin{split} & [Fe(CN_{\&})^{4-}, [Mn(CN_{\&})^{4-}, \\ & d^{2}sp^{3} \\ & (Co(NH_{3})_{6})^{3+} \underbrace{e}_{Sp\&_{2}} ^{Ni(NH_{3})_{6}} \underbrace{e}_{Sp\&_{2}} ^{2+} \end{split}$$

Hence [Ni(NH3)6]²⁺ is outer orbital complex. 3 The order of reaction is 18 2.

- and molecularity CaSO
- 44. (d)

- 45. (a) More is ERP, more is the tendency to get itself reduced or more is oxidising power.
- $DG = -2.303 RT \log K$ $-nFE^{\circ} = -2.303 \text{ RT log K}$

$$\log K = \frac{\text{nFE}}{2.303 \text{ RT}} = \frac{0.4342 \text{ RT}}{\text{nFE}^{\circ}}$$
 (i)

$$\ln K = \frac{nFE}{RT}$$

$$K = e \frac{nFE}{RT}$$
......(ii)

47. (c) Compound O.S. of N N2O NO + 2 NO₂ NO-3+ 5 NH+4

Therefore increasing order of oxidation state of N is:

$$NH_4^+ < NO < NO < NO < NO < NO 3$$
.

(a) Raoult's law becomes special case of Henry's law when Hebecome equal to po.1

(b)
$$E_{\text{cell}}^{\circ} = \frac{0.059}{2} \log K_{\text{cor}} + 0.059 = \log K_{\text{c}}$$

 $V_{\text{c}} = 1.9' 10^{37}$

50. (d) $\frac{P}{T}$ = constant (Gay Lussac's law)

$$p = \frac{P}{1} = \frac{P}{2} p \quad P1T2= P2T1$$

$$PV = constant$$

$$PV = P2V2 \quad [Boyle's law]$$

- 51. (b) Dn=- $\frac{1}{2}$; DH=DE- $\frac{1}{2}$ RT; pDE>DH
- 52. (d) For H atom, En $\frac{13.6Z^2}{n^2}$ eV

For second orbit, n = 2Z = At. no. = 1 (for hydrogen)

\ E₂ =
$$-\frac{13.6 \cdot (1)^2}{(2)^2} = \frac{-13.6}{4} \text{ eV}$$

= $\frac{-13.6 \cdot 1.6 \cdot 10^{-19}}{4} \text{J}$
= $-5.44 \cdot 10^{-19} \text{J}$

- 53. (b The right sequence of LE of Li < B < Be < 63. (c) M1V1 = M2V2
- 54.) Photochemical smog does not involve SQ.
- 55. (c There are four chief minerals present in a
 -) Portland cement tricalcium silicatsi (Ca) (c dicalcium silicate (Ca) and calcium afumilho-
 -) aluminate (Ca

ferrite (C&AlnFe2-nO7).

- 56. (a) Ammonia is a weak base and a salt containing its conjugate acid, shorth duind to contain a buffer solution when they are present together in a solution.
- 57. (c) Among these ligands, 'F' is a weak field ligand, makes only high spin complexes which has sp3d2 hybridization.
- Glycosidic linkage is a type of covalent bond 58. (d) that joins either two carbohydrate (sugar)
- molecule or one carbohydrate to another group. All molecules show such type of linkages.

Schotten-Baumann Conditions

59. (a)

$$R \xrightarrow{O} + H2N - R \not \leftarrow \xrightarrow{NaOH} R \xrightarrow{N - R \not \leftarrow} N - R \not \leftarrow H$$

The use of added base to drive the equilibrium in the formation of amides from amines and

- 60. (c) chlorides. Note that in structures 1 and 2, every two adjacent hydrogen atoms are at maximum possible distance from each other (staggered
- 61. (b) conformation). Bond decreases with an increase in bond order. Therefore, the order of bond bygthoindtheserspecies 2:5,00=2,207.5,
- 62. (a) For a given orbital with principal quantum number (n) and azimuthal quantum number (1) number of radial nodes = (n-1-1) for 3s orbital: n=3and 1 = 0 therefore, number of radial nodes = 3 - 0 - 1 = 2 for 2p orbital: n = 2 and 1 = 1 therefore, number of radial nodes = 2 - 1 - 1 = 0

- (0.025 M) (0.050 L) = (2M)(0.025 L)M2 = 0.05 Mbut, there are 2 H's per **25**O4 so [H2SO4] = 0.025 M
- 64. (a) Given, mass ratio is C:H:O (6:1:24) so, molar ratio will be 6/12:1/1:24/16 = 1:2:3therefore, HO-(C=O)-OH has molar ratio 1:2:3
- 65. (b) In bcc structure, no. of atoms at corner = $1/8 \times 8 = 1$ no. of atom at body centre = 1therefore, total no of atom per unit cell = 2.
 - (b) PHoes not exist because d-orbital of 'P' interacts with s-orbital of H. Bond formed is not stable and not energetically favorable. It depends on size and orientation of interaction.
- Ionic bonding is non directional, whereas 67. (b) covalent bonding is directional. So, CDis d ir ect ion al.

66.

68. (a) Given DH 35.5 kJ mol-1 DS = 83.6 JK - 1 mol - 1QDG = DH - TDSFor a reaction to be spontaneous, DG = -vei.e., DH < TDS

T > 425 K

69. (c)
$$I_{m} = \frac{1000 \text{k}}{0.1} = \frac{1000 \text{ '} 3.75 \text{ '} 10^{-4}}{0.1} = 3.75;$$

$$a = \frac{I_{m}}{I_{m}^{*}} = \frac{3.75}{250} = 1.5 \text{ '} 10^{-2};$$

 $Ka = G2 = 0.1 \times (1.5 \times 10^{-5}) = 2.25 \times 10^{-5}$

70. (b) Rate= k [A]x[B]y

$$\frac{\text{Ratq}}{4} = \text{k [A]x [2B]y} \qquad ... (2)$$

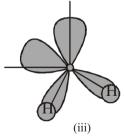
or Rate = 4k[A]x[2B]yFrom (1) and (2) we get

$$\frac{k[A]^{x}[B]}{4} = k[A]x[2B]y$$

$$\frac{[B]^y}{4} = [2B]y$$

or
$$\frac{1}{4} = \frac{2}{6} \frac{2}{B} \frac{5}{6} = \frac{3}{4} = 2y$$
 or (2)–2 = 2y

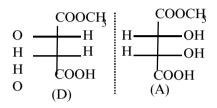
y = -2.


71. (a) A compound is said to exhibit optical isomerism if it atleast contains one chiral carbon atom, which is an atom bonded to 4 different atoms or groups.

- 72. (c) Meso compounds are characterized by an internal plane of symmetry that renders them achiral. Control rods
- 73. (a) slowdown the motion of neutrons and help in controlling the rate of fission. Cadmium is efficient for this purpose.
- 74. (c) Reducing reagent is needed, as shown in given reaction.

$$NO_2$$
 Z_0
 $aq. NH+CI$
 OI

75. (c) H2CO3 H+ + HCO-CO₃. HCO₃ candonate and accept H.


76. (c)

- 77. (c) Because Na is very reactive and cannot be extracted by means of the reduction by C, CO etc. So it is extracted by
- 78. (d) electrolysis. Rotation of B through 180° within the plane

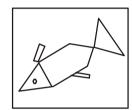
of the paper gives D which is an enantiomer of A, hence A and B are enantiomers

- 79.
- Thyroxine is an amine hormone.

PART - III (A): ENGLISH PROFICIENC

- 81. (a) ThearwardLoguacious (Adjective) talking a lot; talkative. Option (a) is the right synonym while others have different meanings.
- 82. (c) The word Meticulous (Adjective) means: paying careful attention to every detail; fastidious; thorough. Careless in option (c) is the correct antonomy.
- 83. (c 84. (b) 85. (d) 86. (b)
- 87.) China is a big country. In area it is bigger
 - (b than any other country except Russia.
 - [except means other than, accept means consent, expect means to anticipate and access means entrancel.
- The treasure was hidden off the shore. 88. (d) When something is hidden "off the shore," it just means that it's hidden somewhere near it.
- Delete 'pair of' before binocular because the 89. (b word 'binocular' itself suggests a pair.
- Delete 'all' before 'left'. Here the usage of 90.) 'all' is superfluous as 'the teacher as well as his students' itself signifies everyone. (b

PART - III (B) : LOGICAL REASONIN


91. (b

92. Option (d) will complete the question figure. (d)

93. (a)

94. (c) All the components of question figure are present in Answer Figure (c)

- 95. (b) In each row, the second figure is obtained from the first figure by adding mutually perpendicular segments at the centre and the third figure is obtained from the first figure by adding four circles outside the main
- 96. (d) figure arch row, the second figure is 103. (a) Tentile and Church are places of obtained by rotating the first figure through 90° CW or 90° ACW and adding a circle to it. Also, the third figure is obtained by adding two circles to the first figure (without rotating the
- On the husband of P. M is the son of P. 97. (a Therefore, M is the son of O.
- Wife of Vinod's father means the mother of 98.) Vinod.
 - Only brother of Vinod's mother means 105. (c) maternal uncle of Vinod.
 - Therefore, Vinod is cousin of Vishal.
- 99. (a) The pattern is as follows:

A³/₄+³/₄2[®] +²C³/₄³/₄®E²/₄³/₄®G³/₄³/₄®I³/₄³/₄®K $G^{3/4+3/4}$ 2 $R^{3/4}$ 8 $K^{3/4}$ 8 $K^{3/4}$ 8 $M^{3/4}$ 8M³/₄+³/₄2®3/₄3/₄®Q3/₄3/₄®\$3/₄3/₄®\$13/₄3/₄®\$12 Y³/₄+³/₄2/₈3/₄3/₄®C³/₄3/₄®E³/₄3/₄®E³/₄3/₄® +² I

100. (b) The pattern is as follows:

34+343+3+3+3T®W3434®Z3434®C3434®F

34+343+3+3+3|RL3434RO3434RR3434RU

Therefore, the first term should be

$$GA^{3/4+3/4}R^{3/4+3/4}R^{3/4+3/4}R^{3/4+3/4}R^{3/4+3/4}R^{3/4+3/4}R^{3/4}$$

The statement implies that politicians win elections by the votes of people. Therefore, neither of the assumptions is implicit in the statement.

102. (d) Table cow Chair Table

> Conc I: True Conc False Conc III: False_

- worship. It does not imply that Hindus and Christians use the same place for worship. Church is different temple. Therefore, neither Conclusion I nor II follows. Growth and development of 104. (a) human organism is a continuous process. Some changes take place in

101.(d)

PART - IV : MATHEMATICS

neither Conclusion I nor II follows.

human body now and then. Therefore,

106. (b) We have g(-3) = 0f(g(-3)) = f(0) = 7(0)2 + 0 - 8 = -8Þ١ fog(-3) = -8g(9) = 92 + 4 = 85 P f(g(9)) = f(85) = 8(85)+3 = 683fog(9) = 683f(0) = 7.02 + 0 - 8 = -8 pg(f(0)) = g(-8)= |-8| = 8gof(0) = 8f(6) = 4(6) + 5 = 29 pg(f(6)) = g(29) = (29)2+4 = 845gof(6) = 845

- 107. (c) X X X X X. The four digits 3, 3, 5,5 can be arranged at (-) places in $\frac{4!}{2!2!}$ = 6 ways.
 - at (X) places in $\frac{5!}{213!}$ ways = 10 ways

Total no. of arrangements = 6'10=60ways

108. (b)

109. (c) Let eq. of ellipse $b = \frac{x^2}{b^2} + \frac{y^2}{b^2} = 1$, length of semi-latus rectum

$$= \frac{b^{r}}{a} = \frac{a^{r}(1-e^{-y})^{r}}{a} = a(1-e^{r})$$
Given $a(1-e^{2}) = \frac{r}{r}(r^{r}a)$

$$p = 1 - e^2 = \frac{2}{3} pe^2 = 1 - \frac{2}{3} = \frac{1}{3} e = \frac{1}{\sqrt{3}}$$

110. (c) Given quadratic eqn. $ix^2 + px + \frac{3p}{4} = 0$

So,
$$a + b = -p$$
, $ab = \frac{3p}{4}$

Now, given $|a-b| = \sqrt{10} \Rightarrow a-b$ $=\pm \sqrt{10}$

- $(b + b)^2 = 10$ $(b + a)^2 + (b 2ab) = 10$
- $(-2.5)^2 4ab = 10$

$$p2 - 4 \times \frac{3p}{4} = 10 \ p \ p2 - 3p - 10 = 0$$

 $p = -2, 5^{4}$ pî $\{-2, 5\}$

The five digits 2, 2, 8, 8, 8 can be arranged 111. (d) The given system of lines passes through the point of intersection of the straight lines 2x + y - 3 = 0 and 3x + 2y - 5 = 0[L1 + 1L2 = 0 form], which is (1, 1).

> The required line will also pass through this point. Further, the line will be farthest from point (4, -3) if it is in direction perpendicular to line joining (1, 1) and (4, -3). The equation of the

required line is $y-1 = \frac{1}{-3-1}(x-1)$ 3x - 4y + 1 = 0

- 112. (b) $\frac{n!}{n^n} = \frac{3}{32} \triangleright \frac{n!}{n^n} = \frac{8'3}{8'3} = \frac{4!}{24^4}$
- 113. (b) R $= (3 + \sqrt{5})^{2n}$, G $= (3 \sqrt{5})^{2n}$ Let [R] + 1 = I (Q[.] greatest integer function) P = R + G = I (Q 0 < G < 1)

 - $(3+\sqrt{5})^{2n} + (3-\sqrt{5})^{2n} = I$

seeing the option put n = 1I = 28 is divisible by 4 i.e. 2n+1

114. (c) For f (x) to be defined, we must have

- $2-1 \neq 2 \times 2 \neq 21$ [O the base = 2 > 1]

- $x^2 13$ 0 i.e. $(x 1) (x + 1)^3$ 0
- $\triangleright x \in -1 \text{ or } x \in 1$(2)
- Þ Also, x2£4 $x^2 - 4 \neq 0$ i.e. $(x - 2)(x + 2) \pm 0$ $-2 \pm £ 2 \dots (3)$

Form (2) and (3), we get the domain of $f = \{(-4, -1) \in [1, 4]\} \subset [-2, 2]$ $= [-2, -1] \, \dot{E} \, [1, 2]$

115. (a) We construct the following table taking assumed mean a = 55 (step deviation method).

Class	X _i	f_i	c.f.	$u_i = \frac{xi-a}{-10}$	$f_i u_i$
10-20	15	2	2	-4	-8
20-30	25	3	5	-3	_9
30–40	35	4	9	-2	-8
40–50	45	5	14	-1	-5
50–60	55	6	20	0	0
60–70	65	12	32	1	12
70–80	75	14	46	2	28
80–90	85	10	56	3	30
90–100	95	4	60	4	16
Total		60			56

The mean
$$=\frac{1}{a} \frac{\partial^2 f}{\partial f} \dot{h}$$

$$=55 + \frac{56}{60}$$
 ' $10 = 55 + \frac{56}{6} = 64.333$

Here n = 60 $\not = \frac{n}{2} = 30$, therefore, 60–70 is

the median class Using the formula:

$$M = 1 + \frac{-fC}{f}$$
, $C = 60 + \frac{30-20}{12}$, $C = 60 + \frac{30-20}{12}$

$$= 60 + \frac{100}{12} = 60 + 8.33 = 68.333$$

116. (c)
$$2e = e + e^{iC}$$

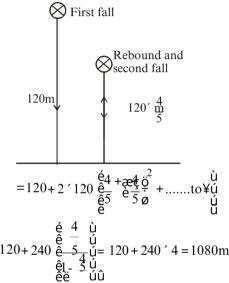
$$\triangleright$$
 2cos B = cos A + cos C ...(i)

& 2 sin B = sin A + sin C ...(ii)
Squaring and adding we get
$$cos(A-C)=1PA-C=0$$

A = C, From (i) and (ii) $\cos B = \cos A$ and $\sin B = \sin A$ So, A = B. A = B = C

117. (c) $d = h \cot 30^{\circ} - h \cot 60^{\circ}$ and time = 3 min.

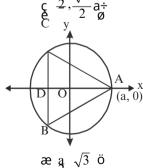
\ S p eed= $\frac{h(\cot 30^{\circ} - \cot 60^{\circ})}{3}$ per minute h


It will travel distance h cot 60° in

$$\frac{\text{hcot60° '3}}{\text{h(cot30° - cot60°)}} = 1.5 \text{ minute}$$

118. (c) Clearly, the total distance described

=
$$120\overset{+}{2}$$
 $(20)\overset{+}{5}$ (4) (4) (4) (4) (5) (4) (5) (4) (5) (5) (5) (5) (6) (6) (6) (7)


Except in the first fall the same ball will travel twice in each step the same distance one upward and second downward travel. Distance travelled

Since the equilateral triangle is inscribed 119. (c) in the circle with centre at the origin, centroid lies on the origin.

So,
$$\frac{AO}{OD} = \frac{2}{1} \Rightarrow OD = \frac{1}{2}AO = \frac{3}{2}$$

So, $\frac{AO}{OD} = \frac{2}{1} \triangleright OD = \frac{1}{2}AO = \frac{3}{2}$ So, other vertices of triangle have coor din a t es,

$$\underset{\xi}{\overset{\text{a. }}{=}} \frac{3}{2}, \frac{\sqrt{3}}{2} \overset{\text{o}}{\underset{\emptyset}{=}}$$

\ Equation of line BC is :

$$x=-\frac{a}{2} b2x + a = 0$$

120. (a) we have, f(x)=x-|x-x|=x-|x(1-x)|

$$=x-|x||1-x|,$$

Continuity is to be checked at x = 0 and x = 1. At x = 0

$$LHL = \hspace{-0.1cm} \underset{h \circledast 0}{\lim} f(0\text{-}h) = \hspace{-0.1cm} \underset{h \circledast 0}{\lim} -h - \hspace{-0.1cm} |-h| \hspace{-0.1cm} |1\text{+}h|$$

$$=\lim_{h \to 0} -h(1+h)=0$$

$$RHL = \underset{h@0}{lim} f(0+h) = \underset{h@0}{lim} h - |h||1 \qquad \ \, h|$$

$$=$$
limh-h(1-h)=0

h®0

and f(0) = 0

Since LHL = RHL = f(0),

 \setminus f(x) is continuous at x = 0.

At
$$x = 1$$

$$LHL = \lim_{h \circledast 0} f(1 - h) = \lim_{h \circledast 0} (1 + h) |1 + h||1 (1 - - h)|$$

$$= \lim_{h \circledast 0} (1 + h) h(1 + h) 1 =$$

Similarly RHL herof (1+ h) =

and
$$f(1)=1-|1|.|1-1|=1$$

\ f(x) is continuous at x = 1Hence f(x) is continuous for all [x \if 1,1]

121. (d) Let
$$P(n) : \frac{4^n}{n+1} < (n!)^{\frac{1}{2}}$$

For $n = 2$.

$$P(2): \frac{4^2}{2+1} < \frac{4!}{(2)2} \quad b \quad \frac{16}{3} < \frac{24}{4}$$

which is true.

Let for $n = m^3 2$, P(m) is true.

i.e.
$$\frac{4m}{m+1} < \frac{(2m)!}{(m!)2}$$

Now,
$$\frac{4^{m+1}}{m+2} = \frac{4^m}{m+1} \cdot \frac{4(m+1)}{m+2}$$

$$<\frac{(2m)!}{(m!)2}\cdot\frac{4(m+1)}{(m+2)}$$

$$= \frac{(2m)!(2m+1)(2m+2)4(m+1)(m+1)^2}{(2m+1)(2m+2)(m!)2(m+1)2(m+2)}$$

$$= \frac{[2(m+1)]!}{[(m+1)!]2} \cdot \frac{2(m+1)^2}{(2m+1)(m+2)}$$

$$<\frac{[2(m+1)]!}{[(m+1)!]2}$$

Hence, for n^2 2, P(n) is true.

122. (b)
$$D = \begin{vmatrix} -a & 1 & 1 \\ 1 & -b & 1 \\ 1 & 1 & -c \end{vmatrix} = 0$$
 for non-zero

solution

$$b abc - a -b - c - 2 = 0$$

$$b abc = a + b + c + 2$$

Now,
$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}$$

$$= \frac{3+2(a-b+c)+(ab+bc+ac)}{1+(a+b+c)+(ab+bc+ac)+abc}$$

$$= \frac{3+2(a+b+c)+(ab+bc+ac)}{1+2(a+b+c)+2+ab+bc+} = 1$$

123. (b) A function f(x) is said to be increasing function in

[a, b] if
$$f'(x) > 0$$
 in [a, b].

Given
$$f(x) = xx$$

Differentiate equation (i)

.... (i)

$$f'(x) = xx (1 + \log x)$$

Put
$$f'(x) = 0$$

$$0 = xx (1 + \log x)$$

$$b x = 0, log x = -1 b x = e^{-1}$$

$$\Rightarrow x = \frac{1}{6}, 0$$

Now,
$$\inf_{\stackrel{.}{e}} \frac{\acute{e}}{e} 0, \frac{1}{e} \stackrel{.}{v}_{1} f^{x}() > 0$$

f(x) is increasing in intervæ $(0, \frac{1}{e})$

124. (d) Let
$$y = \frac{x}{x^2 - 5x + 9}$$

$$x^2 - 3x + 9y = 0$$

for real x, Discriminant = $b2 \frac{1}{ac}4_3$

$$(5y + 1)2 - 36y2 > 0$$

$$b \quad (5y + 1 - 6y) (5\overline{y} + 1 + 6y) > 0$$

127. (a) Let,
$$I = \frac{\cos x - 1}{\sin x + 1} ex dx$$

$$= \frac{e^{\frac{c}{\cos x}} - \frac{1}{\sin x + 1} \frac{b}{u} e^{x} dx}{\cos x + \frac{1}{\sin x + 1} \frac{b}{u} e^{x} dx}$$

$$= \frac{c^{\frac{c}{\cos x}} - \frac{1}{\sin x + 1} ex dx}{e^{\frac{c}{\sin x + 1}} - \frac{1}{\sin x + 1} ex dx}$$

$$= \frac{e^{x} \cos x}{1 + \sin x} - \frac{e^{x} - \cos x}{(1 + \sin x)^{2}} ex dx$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + \frac{e^{x} - \cos x}{(1 + \sin x)^{2}} ex dx$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

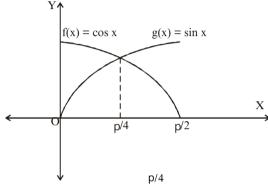
$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}{1 + \sin x} + C$$

$$= \frac{e^{x} \cos x}$$

If $2\cos x + 1 = 0$, then $\cos x = -\frac{1}{2} = \cos \frac{20}{3}$


$$\Rightarrow x=2n p \pm \frac{2p}{3}, n\hat{I}I$$

Hence the required general solution are

$$x = (2m \cdot 1) \frac{p}{4}$$
 and

$$x=2n p \pm \frac{2p}{3}$$

m,nîı 130. (b) $y = |\cos x - \sin x|$

Required area $\stackrel{p/4}{\underset{\circ}{\sim}} (\cos x - \sin x) dx$

$$=2[\sin_k + \cos x]_0^2 p/4$$

$$=2\frac{\acute{e}}{\grave{e}\sqrt{2}}^{2}-\grave{\dot{\Pi}}\overset{.}{\dot{u}}=(2\sqrt{2}-2)\text{sq.units}$$

131. (a) We have,

$$Lf \not e(0) = \lim_{h \circledast 0} \frac{f(0-h)-f(0)}{-h} = \lim_{h \circledast 0} \frac{-h \log \cosh}{-h \log(1+h2)}$$

$$= \lim_{h \\ \otimes 0} \frac{\log \cosh}{\log(1+2h)} \qquad \qquad \mathop{\xi \oplus}_{\dot{e}}^{0} \text{ form}_{\dot{\emptyset}}^{\ddot{O}}$$

$$\overset{\text{all}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{o}}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{\text{o}}}{\overset{\text{o}}}{\overset{o}}}{\overset{\text{o}}}{\overset{o}}}{\overset{\text{o}}}{\overset{\text{o}}}}{\overset{o}}}{\overset{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}{\overset{o}}{\overset{o}}}{\overset{o}}}{\overset{o}}$$

$$= \lim_{h \to 0} \frac{-\tan h}{2h/(1+2h)} = -1/2$$

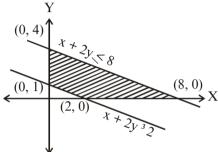
$$Rf \not c(0) = \lim_{\substack{h \circledast 0 \\ lim}} \frac{f(0+h)-f(0)}{h} = \lim_{\substack{h \circledast 0}} \frac{hlogcosh}{hlog(1+ \ ^2)}$$

$$= \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{\log \cosh}{\log (1+h)^2} & & & @ 0 & \ddot{o} \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & @ 0 & \ddot{o} \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & \\ \lim_{\begin{subarray}{c} h @ 0 \end{subarray}} \frac{1}{\log (1+h)^2} & & & \\$$

Since $Lf_{\mathcal{C}}(0) = Rf_{\mathcal{C}}(0)$, therefore f(x) is differentiable at x = 0

Since differentiability

continuity, therefore f(x) is continuous at


(b)
$$x = 0$$
.

132. Given:
$$x + 2y = 2$$
(1)

$$x + 2v \in 8$$

....(2)

x, y 3 0 and

For equation (1)

$$\frac{x}{2} + \frac{y}{1} = 1$$

and for equation (2)

$$\frac{x}{8} + \frac{y}{4} = 1$$

Given: z = 3x + 2y At point (2, 0); z = 3 $\times 2 + 0 = 6$ At point (0, 1); $z = 3 \times 0 + 2$ $\times 1 = 2$ At point (8, 0); $z = 3 \times 8 + 2 \times 0$ = 24 At point (0, 4); $z = 3 \times 0 + 2 \times 4 =$ 8 maximum value of z is 24 at point (8, 0). V = pr2h = constant. If k be the thickness of the sides then that of the 133. (c) top will be (5/4)k. S = (2prh)k + (pr2). (5/4)k ('S' is vol. of material used)

orS =
$$2 \beta k$$
. $\frac{V}{p^{2}} + \frac{5}{4} pr2k = k \frac{2V}{k} + \frac{5}{4} r2 \frac{\ddot{Q}}{\ddot{Q}}$
 $\sqrt{\frac{dS}{dr}} + \frac{2V}{k} + \frac{5}{2} pr \frac{\ddot{Q}}{\ddot{Q}} \sqrt{r3} = 4V/\sqrt{p}$
 $\frac{d2S}{dr2} = k \frac{24V}{k} + \frac{5}{2} p \frac{\ddot{Q}}{\ddot{Q}} \sqrt{r3} = 4pr2h$.
When $r3 = 4V/\sqrt{p}$ or $5pr3 = 4pr2h$.

134. (d) We have

$$n (A \grave{E} B \grave{E} C) = n (A) + n (B) + n (C)$$

 $-n (A \subsetneq B) - n(B \subsetneq C) - n (C \subsetneq A)$
 $+ n (A \subsetneq B \subsetneq C)$

=
$$10 + 15 + 20 - 8 - 9 - n$$
 ($\C A$)
+ n ($A\C B C$)
= $28 - \{n(C\C A) - n$ ($A\C B C C$)} ...(i)
Since n ($C\C A$) 3 n (A ($A\C C$)
We have n ($C\C A$) $- n$ ($A\C C$) 3
From (i) and (ii) ...(ii)

$$n (A \grave{E} \grave{B} C) \pounds 8$$
 ...(iii)
Now, $n(A \grave{E} B) = n (A) + n (B) - n (A B)$
 $= 10 + 15 - 8 = 17$

and n (B
$$\stackrel{.}{\in}$$
 C) = n (B) + n (C) - n ($\stackrel{.}{\triangleright}$ C)
= 15 + 20 - 9 = 26

= 15 + 20 - 9 = 26Since, $n (A \stackrel{.}{E} B \stackrel{.}{E} C) \stackrel{.}{n} (A \stackrel{.}{E} C)$ and $n (A \stackrel{.}{E} B C) \stackrel{.}{n} (B \stackrel{.}{E} C)$, we have $n (A \stackrel{.}{E} B C) \stackrel{.}{3} 17$ and $n (A \stackrel{.}{E} B C) 26$ Hence $n (A \stackrel{.}{E} B C) 26$...(iv)
From (iii) and (iv) we obtain $26 \stackrel{.}{B} (A \stackrel{.}{E} B C) 2 \stackrel{.}{E}$ Also $n (A \stackrel{.}{E} B \stackrel{.}{E} C)$ is a positive integer $n (A \stackrel{.}{E} B C) = 26$ or 27 or 28

Also if (AEBE C) is a positive integer
$$n(AEBC) = 26 \text{ or } 27 \text{ or } 28$$

135. (a) $z = 1 + 2iP |z| = \sqrt{1 + 4} = \sqrt{5}$

$$f(z) = \frac{7 - z}{1 - z^2} = \frac{7 - 1 - 2i}{1 - (1 + 2i)^2}$$

$$= \frac{6 - 2i}{1 - (1 - 4 + 4i)} = \frac{6 - 2i}{4 - 4i} = \frac{3 - i}{i - 2i}$$

$$|f(z)| = \left| \frac{3 - i}{2 - 2} \right| = \frac{|3 - 2i|}{i - 2i}$$

$$=\frac{\sqrt{9+1}}{\sqrt{4+4}}=\frac{\sqrt{5}}{2}=\frac{|z|}{2}$$

136. (b) Let
$$f(x) = \cos{-\frac{\acute{e}1 - (\log x)^2 \grave{u}}{\ddot{e}4 \cdot (\log x)^2 \grave{u}}}$$

Put $\log x = t$ in f(x)

$$f(x) = \cos^{1} \frac{\dot{e}1 - t^{2}\dot{u}}{\ddot{e}1 + t^{2}\dot{u}}$$

Now, put t = tanq, we get

$$f(x) = \cos{-\frac{\acute{e}_1}{\acute{e}_1}} - \frac{\acute{e}_1}{\acute{e}_1} - \frac{\acute{e}_1}{\acute{e$$

$$tan-1 (log x)$$

Diff. both side w.r.t 'x', we get

$$f'(x) = 2\frac{1}{1 + (\log x)2} \frac{1}{x}$$

Now.

$$f'(e) = 2 \frac{1}{1 + (\log e)^2} \cdot \frac{1}{e} = \frac{1}{e}$$
(Qlog e = 1)

137. (d) Number form by using 1, 2, 3, 4, 5 = 5! = 120 Number formed by using 0, 1, 2, 4, 5

Total number formed, divisible by 3 (taking numbers without repetition) = 216

Statement 1 is false and statement 2 is true.

138. (c) Any tangent to parabola y2 = 8x is

$$y = mx + \frac{2}{m}$$
 ...(i)

It touches the circle 2+2xy-12x+4=0, if the length of perpendicular from the centre

(6, 0) is equal to radius 32.

$$\sqrt{\frac{6m + \frac{2}{m}}{\sqrt{m^2 + 1}}} = \pm \sqrt{32} \stackrel{\text{pagm}}{=} \frac{1}{8} \frac{\ddot{g}^2}{\ddot{g}} = 8(m^2 + 1)$$

$$(3m2 + 1)2 = 8(m4 + m2)$$

 $(3m4 - 2m2 + 1) = 0$ $(3m4 - 2m2 + 1) = 0$ $(3m4 - 2m2 + 1)$
Hence, the required tangents are $(3m4 - 2m2)$ $(3m4 - 2m2)$ and $(3m4 - 2m2)$ $(3m4 - 2m2)$

139. (a)

$$R(s)R(t) = \begin{cases} e \cos s & \sin s \hat{u} & e \cos t \sin t \hat{u} \\ e - \sin s & \cos s \hat{u} & e - \sin t \cos t \hat{u} \end{cases}$$

$$e \cos s \cos t - \sin s \sin t \cos s \sin t + \sin s \cos t \hat{u}$$

$$= e - \sin s \cos t - \cos s \sin t + \sin s \cos t \hat{u}$$

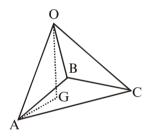
$$= e \cos (s + t) \sin (s + t) \hat{u}$$

$$= e - \sin (s + t) \cos (s + t) \hat{u}$$

$$= e - \sin (s + t) \cos (s + t) \hat{u}$$

140. (d)
$$\overset{\bullet}{O} \overset{\log \overset{\bullet}{Q}}{\stackrel{\bullet}{f}} + \overset{1}{\overset{\circ}{x}} \overset{\circ}{d} x$$

$$= \log \frac{1}{6} + \frac{1}{x} \overset{\vdots}{\overset{\circ}{\varphi}} \frac{x^{2}}{2} - \overset{\bullet}{O} \overset{x}{x+1} \overset{\bullet}{\zeta} \overset{\bullet}{\overset{\bullet}{\zeta}} - \overset{1}{x^{2}} \overset{\circ}{\Rightarrow} \overset{\bullet}{z} dx$$


$$= \frac{x^{2}}{2} \log \overset{\bullet}{\xi} \overset{x+1 \overset{\circ}{\circ}}{x \overset{\circ}{\varphi}} \overset{x}{\overset{\circ}{\varphi}} - \frac{1}{2} \overset{\circ}{O} \overset{x+1-1}{x+1} dx$$

$$= \frac{x^{2}}{2} \log \overset{\bullet}{\xi} \overset{x+1 \overset{\circ}{\circ}}{x \overset{\circ}{\varphi}} \overset{x+1 \overset{\circ}{\circ}}{z} + \frac{1}{2} \overset{x+1-1}{O} (x+1) + c$$

$$= \frac{x^{2}}{2} \log \overset{\bullet}{\xi} \overset{\bullet}{x} + \frac{1}{2} \overset{\bullet}{z} - \frac{1}{2} \log (x+1) + c$$

$$= \overset{\bullet}{\xi} \overset{x^{2}}{z} - \frac{1}{2} \overset{\circ}{\overset{\circ}{\varphi}} \log (x+1) - \overset{x}{z} \log x + \frac{1}{2} x + c$$

141. (c) OA=a,OB=b&OC=c are unit vectors and equally inclined to each other at an acute angle q.

\ ABC is an equilateral triangle

and AB=
$$\sqrt{OA^2+OB-^2}$$
 2OA.OB.cosq
= $\sqrt{2-2\cos q} = \sqrt{2}\sqrt{1-\cos q}$
\(\frac{3}{4}\) Area of \(\frac{D}{A}BC\)
= $\frac{\sqrt{3}}{4}AB^2 = \frac{\sqrt{3}}{4}.2(1-\cos q) = \frac{\sqrt{3}}{2}(1-\cos q)$

If G is the centroid of the D ABC, then

$$OG = \frac{1}{3} \begin{vmatrix} r & r & r \\ a & b & c \end{vmatrix}$$

$$= 3\sqrt{a^2 + b^2 + c^2 + 2a \cdot b + 2b \cdot c + 2c \cdot a}$$

$$= \frac{1}{\sqrt{3}} \sqrt{1 + 2\cos q}$$

\ [dbc] = Volume of parallelopiped
= OG × 2 ar (D ABC)
=
$$2 \cdot \frac{1}{\sqrt{3}} \sqrt{1 + 2\cos q} \cdot \frac{\sqrt{3}}{2} (1 - \cos q)$$

= $(1 - \cos q) \sqrt{1 + 2\cos q}$

142. (b) The given product

$$= 2^{\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{3} + 2...} = 2s \text{ (say)}$$

$$\text{Now S} = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + ... \dots \dots (1)$$

$$= \frac{1}{2} = \frac{1}{3} = \frac{3}{3} = \frac{3}{3$$

$$p = \frac{1}{2}S = \frac{1}{8} + \frac{3}{16} + \frac{3}{32} + \dots$$
 ...(2)
Apply; (1) – (2)

p
$$\frac{1}{2}S = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

= $\frac{1/4}{1 - 1/2} = \frac{1}{2}$ \ \ S = 1
p Product = 21 = 2

143. (a)
$$\frac{{}^{n}C_{r}}{{}^{r+3}C_{r}} = 3! \frac{1}{(r+3)(r+2)(r+1)} \cdot \frac{{}^{n}C_{r}}{(n+1)}$$

$$= 3! \frac{1}{(r+3)(r+2)} \cdot \frac{{}^{n+1}C_{r+1}}{(n+1)} [See Formulae]$$

$$= 3! \frac{1}{(r+3)(n+1)} \cdot \frac{{}^{n+1}C_{r+1}}{r+2}$$

$$= 3! \frac{3!}{(n+1)(n+2)} \cdot \frac{{}^{n+2}C_{r+2}}{r+3}$$

$$= \frac{3!}{(n+1)(n+2)(n+3)} \cdot \frac{{}^{n+3}C_{r+3}}{r+3}$$

$$\int_{r=0}^{\infty} (-1)r \frac{{}^{n}Cr}{{}^{r+3}Cr}$$

$$= \frac{6}{(n+1)(n+2)(n+3)} \sum_{r=0}^{8} (-1)^{r} {n+3 \choose r+3}$$

$$= \frac{6}{(n+1)(n+2)(n+3)} \sum_{r=0}^{n+3} (-1)^{r} {n+3 \choose r+3}$$

$$= \frac{6}{(n+1)(n+2)(n+3)} \sum_{r=0}^{n+3} (-1)^{r} {n+3 \choose r+3}$$

$$= \frac{6}{(n+1)(n+2)(n+3)} \sum_{r=0}^{n+3} (-1)^{r} {n+3 \choose r+3} {n+3 \choose r+3} = 0$$

$$= \frac{6}{(n+1)(n+2)(n+3)} \sum_{r=0}^{8} (-1)^{r} {n+3 \choose r+3} {n+3 \choose r+3} = 0$$

$$= \frac{3}{(n+1)(n+2)(n+3)} (n^2 + 3n + 2) = \frac{3}{n+3}$$

Given,
$$\frac{3}{n+3} = \frac{3}{a+3}$$

 \triangleright n \Rightarrow \triangleright a-n=0

144. (c)
$$\begin{vmatrix} p & q-y & r-z \\ p-x & q & r-z \\ p-x & q-y & r \end{vmatrix} = 0$$

Apply R^l R1 - R3 and R2 R2 - R3, we get

$$\begin{vmatrix} x & 0 & -z \\ 0 & y & -z \\ p-x & q-y & r \end{vmatrix} = 0$$

 $\Rightarrow x[yr + z(q-y)]-z[0-y(p-x)]=0$

[Expansion along first row]

$$\Rightarrow xyr + xzq - xzy + yzp - zyx = 0$$

$$\Rightarrow xyr + zxq + yzp = 2xyz \Rightarrow \frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$$

45. Let A (i = 2, 3, 4, 5) be the event that urn contains 2, 3, 4, 5 white balls and let B be the event that two white balls have been drawn then we have to find P (A/B).

Since the four events A, A, A, and A are equally likely we have $P(A_2) = P(A_3) = P$

$$(A) = P(A) = \frac{1}{4}$$

P(B/A) is probability of event that the urn contains 2 white balls and both have been drawn.

$$P(B/A)$$
 2= $\frac{{}^{2}C_{2}}{5} = \frac{1}{2}0$

Similarly P(B/A) =
$$\frac{{}^{3}C_{2}}{C2} = \frac{3}{10}$$

$$P(B/A 4) = {}^{4}C_{2} = {}^{3}$$

$$P(B/A 5) = \frac{5}{5C2} = 1.$$

By Baye's theorem,

$$P(A5/B) = \frac{P(A5)P(B/A5)}{P(A2)P(B/A2)+P(A3)P(B/A3)} + P(A4)(B/A4)+P(A5)P(B/A5)$$

$$= \frac{\frac{1}{4.1}}{\frac{1}{4} \frac{\text{\'e}1}{\text{\ref1}0} + \frac{3}{10} + \frac{3}{5} \frac{\text{\'e}1}{\text{\'e}1}} = \frac{10}{20} = \frac{1}{2}.$$

146. (b) As given plane $x + y - z = \frac{1}{2}$ divides the line joining the points A (2, 1, 5) and B (3, 4, 3) at a point C in the ratio k: 1.

Then coordinates of C

$$\xi \frac{3k+2}{k+1}, \frac{4k+1}{k+1}, \frac{3k+5}{k} \frac{\ddot{0}}{\ddot{p}}$$

Point C lies on the plane,

• Coordinates of C must satisfy the equation of plane.

So,
$$\xi = \frac{1}{k+1} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$b \quad 3k + 2 + 4k + 1 - 3k - 5 (k+1)$$

$$\Rightarrow$$
 4k - 2 = $\frac{1}{2}$ (k + 1)

$$b 8k - 4 = k + 1b 7k = 5$$

$$\flat \quad k = \frac{5}{7}$$

Ratio is 5:7.

147. (c) Let
$$I = \mathring{O} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 ... (i)

Th en.

$$I = \mathring{O}_{0}^{p/2} \frac{\sqrt{\sin(p/2 - x)}}{\sqrt{\sin(p/2 - x)} + \sqrt{\cos(p/2 - x)}} dx$$

$$b \quad I = \overset{\mathsf{p}/2}{\underset{0}{\grave{o}}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx$$

... (ii)

Adding (i) and (ii), we get

$$\mathbf{p}_{1}^{\mathbf{x}} = \frac{\mathbf{p}}{4} \mathbf{p} \quad \mathbf{\hat{Q}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \mathbf{\hat{Q}}$$

148. (a) Let the required vector be

$$\sqrt[4]{+3j^2} = 5 \Rightarrow x + 3y - 2z = 5$$
 ...(ii)

and
$$\sqrt[4]{i^+ + j^+ + 4k} = 8 \Rightarrow 2x + y + 4z = 8 \dots (iii)$$

Subtracting (ii) from (i), we have

$$-2y - z = -5$$
 b $2y + z = 5$...(iv)

Multiply (ii) by 2 and subtracting (iii) from it, we obtain

$$5y - 8z = 2 \qquad \dots (v)$$

Multiply (iv) by 8 and adding (v) to it, we have

$$21y = 42$$
 b $y = 2$...(v)

Substituting y = 2 in(iv), we get

 $2 \times 2 + z = 5$ b z = 5 - 4 = 1

Substituting these values in (i), we get

x + 2 - 3 = 0 $\Rightarrow x = 3 - 2 = 1$

Hence, the required vector is

$$r_{v} = xi_{+}^{2} yj_{+}^{2} zk_{-i}^{2} + 2j_{+}^{2} k_{-i}^{2}$$

149.(c) Equation of lines are $\begin{pmatrix} x - y \\ a - b \end{pmatrix} = 1$ and

$$\frac{x}{b} - \frac{y}{a} = 1$$

Pm1= $\frac{b}{a}$ and $m_2 = \frac{a}{b}$

$$q = tan^{-1} \frac{a}{a} \frac{b}{b} \frac{a}{b} = tan^{-1} \frac{b2 - a^2}{2ab}$$

150. (d) Given points are A (k, 1, -102kB, 0, 2) and C (2 + 2k, k, 1)

Let rl = length of line

AB=
$$\sqrt{(2k-k)^2+(0-1)^3+(2+)^2}$$
1

$$=\sqrt{k2 + 5}$$

Now, let 11,m1,n1,be direction-cosines of

line ABand 1

cosines of BC.

Since AB is perpendicular to BC

Now,
$$_{1}l = \frac{k}{\sqrt{k^{2} + 10}}$$
, $m_{1} = \frac{-1}{\sqrt{k^{2} + 10}}$, $m_{1} = \frac{3}{\sqrt{k^{2} + 10}}$

and
$$|_{2} = \frac{2}{\sqrt{k} + 5}$$
, $m_{2} = \frac{k}{n_{2}} = \frac{-1}{\sqrt{k^{2} + 5}}$
So, $|_{1} |_{2} + m_{1} m_{2}$ $n_{1} n_{2} = 0$

$$b \quad \frac{2k}{\sqrt{k^2 + 1}\sqrt{k^2 + 5}} - \frac{k}{\sqrt{k \cdot 2 + 1}\sqrt{k \cdot 2 + 5}} - \frac{3}{\sqrt{k^2 + 1}\sqrt{k^2 + 5}} = 0$$

$$\triangleright 2k - k - 3 = 0$$

$$\triangleright$$
 $k = 3$

Fork = 3, ABis perpendicular t&C.