JEE (Advanced) 2023

Mathematics

SECTION 1 (Maximum Marks: 12)

• This section contains **THREE (03)** questions.

- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

- Q.1 Let $S = (0,1) \cup (1,2) \cup (3,4)$ and $T = \{0,1,2,3\}$. Then which of the following statements is(are) true?
 - (A) There are infinitely many functions from S to T
 - (B) There are infinitely many strictly increasing functions from S to T
 - (C) The number of continuous functions from S to T is at most 120
 - (D) Every continuous function from S to T is differentiable

- Q.2 Let T_1 and T_2 be two distinct common tangents to the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$ and the parabola $P: y^2 = 12x$. Suppose that the tangent T_1 touches P and E at the points A_1 and A_2 , respectively and the tangent T_2 touches P and E at the points A_4 and A_3 , respectively. Then which of the following statements is(are) true?
 - (A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units
 - (B) The area of the quadrilateral $A_1A_2A_3A_4$ is 36 square units
 - (C) The tangents T_1 and T_2 meet the x-axis at the point (-3,0)
 - (D) The tangents T_1 and T_2 meet the x-axis at the point (-6,0)
- Q.3 Let $f:[0,1] \to [0,1]$ be the function defined by $f(x) = \frac{x^3}{3} x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0,1] \times [0,1]$. Let $G = \{(x,y) \in S : y > f(x)\}$ be called the green region and $R = \{(x,y) \in S : y < f(x)\}$ be called the red region. Let $L_h = \{(x,h) \in S : x \in [0,1]\}$ be the horizontal line drawn at a height $h \in [0,1]$. Then which of the following statements is(are) true?
 - (A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h
 - (B) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h
 - (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h
 - (D) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

: +3 If **ONLY** the correct option is chosen; **Full Marks**

: 0 If none of the options is chosen (i.e. the question is unanswered); Zero Marks

Negative Marks: -1 In all other cases.

- Q.4 Let $f:(0,1)\to\mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x\in\left[\frac{1}{n+1},\frac{1}{n}\right]$ where $n\in\mathbb{N}$. Let $g:(0,1)\to\mathbb{R}$ be a function such that $\int_{2}^{x}\sqrt{\frac{1-t}{t}}dt < g(x) < 2\sqrt{x}$ for all $x\in(0,1)$. Then $\lim_{x\to 0} f(x)g(x)$
 - (A) does **NOT** exist
 - (B) is equal to 1
 - (C) is equal to 2
 - (D) is equal to 3
- Q.5 Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \in \{0, 1\} \}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube O; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1,\ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1, \ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is
 - (A) $\frac{1}{\sqrt{6}}$
- (B) $\frac{1}{\sqrt{9}}$
- (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{12}}$
- Let $X = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x \right\}$. Three distinct points P, Q and R are Q.6 randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is
 - (A) $\frac{71}{220}$

- (B) $\frac{73}{220}$ (C) $\frac{79}{220}$ (D) $\frac{83}{220}$

Q.7 Let P be a point on the parabola $y^2 = 4ax$, where a > 0. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is

(A) (2,3)

(B) (1,3)

(C) (2,4)

(D) (3,4)

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

- Q.8 Let $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1 + \cos(2x)} = \sqrt{2} \tan^{-1}(\tan x) \text{ in the set } \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ is equal to
- Q.9 Let $n \ge 2$ be a natural number and $f:[0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

If n is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function f is

Q.10 Let $75\cdots 57$ denote the (r+2) digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum $S = 77 + 757 + 7557 + \cdots + 75\cdots 57$. If $S = \frac{75\cdots 57 + m}{n}$, where m and n are natural numbers less than 3000, then the value of m+n is

JEE (Advanced) 2023

- Q.11 Let $A = \left\{ \frac{1967 + 1686i \sin \theta}{7 3i \cos \theta} : \theta \in \mathbb{R} \right\}$. If A contains exactly one positive integer n, then the value of n is
- Q.12 Let P be the plane $\sqrt{3}x + 2y + 3z = 16$ and let $S = \left\{\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the distance of } (\alpha, \beta, \gamma) \text{ from the plane } P \text{ is } \frac{7}{2}\right\}.$ Let \vec{u}, \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u} \vec{v}| = |\vec{v} \vec{w}| = |\vec{w} \vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and \vec{w} . Then the value of $\frac{80}{\sqrt{3}}V$ is
- Q.13 Let a and b be two nonzero real numbers. If the coefficient of x^5 in the expansion of $\left(ax^2 + \frac{70}{27bx}\right)^4$ is equal to the coefficient of x^{-5} in the expansion of $\left(ax \frac{1}{bx^2}\right)^7$, then the value of 2b is

JEE (Advanced) 2023

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 Let α, β and γ be real numbers. Consider the following system of linear equations

$$x + 2y + z = 7$$

$$x + \alpha z = 11$$

$$2x-3y+\beta z=\gamma$$

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

(P) If
$$\beta = \frac{1}{2}(7\alpha - 3)$$
 and $\gamma = 28$, then the

(1) a unique solution

system has

(Q) If
$$\beta = \frac{1}{2}(7\alpha - 3)$$
 and $\gamma \neq 28$, then the

(2) no solution

system has

(R) If
$$\beta \neq \frac{1}{2}(7\alpha - 3)$$
 where $\alpha = 1$ and

(3) infinitely many solutions

 $\gamma \neq 28$, then the system has

(S) If
$$\beta \neq \frac{1}{2}(7\alpha - 3)$$
 where $\alpha = 1$ and

(4) x = 11, y = -2 and z = 0 as a solution

 $\gamma = 28$, then the system has

(5) x = -15, y = 4 and z = 0 as a solution

The correct option is:

(A)
$$(P) \to (3)$$
 $(Q) \to (2)$ $(R) \to (1)$ $(S) \to (4)$

(B)
$$(P) \to (3)$$
 $(Q) \to (2)$ $(R) \to (5)$ $(S) \to (4)$

(C)
$$(P) \to (2)$$
 $(Q) \to (1)$ $(R) \to (4)$ $(S) \to (5)$

(D)
$$(P) \to (2)$$
 $(Q) \to (1)$ $(R) \to (1)$ $(S) \to (3)$

Q.15 Consider the given data with frequency distribution

$$x_i$$
 3 8 11 10 5 4 f_i 5 2 3 2 4 4

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

- (P) The mean of the above data is
- (Q) The median of the above data is
- (R) The mean deviation about the mean of the above data is
- (S) The mean deviation about the median of the above data is

(4) 2.7

(1) 2.5

(2) 5

(3) 6

(5) 2.4

The correct option is:

(A)
$$(P) \to (3)$$
 $(Q) \to (2)$ $(R) \to (4)$ $(S) \to (5)$

$$(Q) \rightarrow (2)$$

$$(R) \rightarrow (4)$$

$$(S) \rightarrow (5)$$

(B)
$$(P) \to (3)$$
 $(Q) \to (2)$

$$(R) \rightarrow (1)$$

$$(S) \rightarrow (5)$$

$$(D) (P) \rightarrow (3)$$

(C)
$$(P) \to (2)$$
 $(Q) \to (3)$
(D) $(P) \to (3)$ $(Q) \to (3)$

$$(R) \rightarrow (4)$$
$$(R) \rightarrow (5)$$

$$(S) \rightarrow (1)$$

 $(S) \rightarrow (5)$

JEE (Advanced) 2023

Q.16 Let ℓ_1 and ℓ_2 be the lines $\vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r}_2 = (\hat{j} - \hat{k}) + \mu(\hat{i} + \hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_1 . For a plane H, let d(H) denote the smallest possible distance between the points of ℓ_2 and H. Let H_0 be a plane in X for which $d(H_0)$ is the maximum value of d(H) as H varies over all planes in X.

Match each entry in List-I to the correct entries in List-II.

List-I

List-II

(P) The value of $d(H_0)$ is

- (1) $\sqrt{3}$
- (Q) The distance of the point (0,1,2) from H_0 is
- $(2) \ \frac{1}{\sqrt{3}}$
- (R) The distance of origin from H_0 is
- (3) 0
- (S) The distance of origin from the point of intersection of planes y = z, x = 1 and H_0 is
- (4) $\sqrt{2}$
- (5) $\frac{1}{\sqrt{2}}$

The correct option is:

- (A) $(P) \to (2)$ $(Q) \to (4)$ $(R) \to (5)$ $(S) \to (1)$
- (B) $(P) \to (5)$ $(Q) \to (4)$ $(R) \to (3)$ $(S) \to (1)$
- (C) $(P) \to (2)$ $(Q) \to (1)$ $(R) \to (3)$ $(S) \to (2)$
- (D) $(P) \to (5)$ $(Q) \to (1)$ $(R) \to (4)$ $(S) \to (2)$
- Q.17 Let z be a complex number satisfying $|z|^3 + 2z^2 + 4\overline{z} 8 = 0$, where \overline{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero.

(5)7

Match each entry in List-I to the correct entries in List-II.

List-I	List-II
(P) $ z ^2$ is equal to	(1) 12
(Q) $ z - \overline{z} ^2$ is equal to	(2) 4
(R) $ z ^2 + z + \overline{z} ^2$ is equal to	(3) 8
(S) $ z+1 ^2$ is equal to	(4) 10

The correct option is:

(A)
$$(P) \rightarrow (1)$$
 $(Q) \rightarrow (3)$ $(R) \rightarrow (5)$ $(S) \rightarrow (4)$
(B) $(P) \rightarrow (2)$ $(Q) \rightarrow (1)$ $(R) \rightarrow (3)$ $(S) \rightarrow (5)$
(C) $(P) \rightarrow (2)$ $(Q) \rightarrow (4)$ $(R) \rightarrow (5)$ $(S) \rightarrow (1)$
(D) $(P) \rightarrow (2)$ $(Q) \rightarrow (3)$ $(R) \rightarrow (5)$ $(S) \rightarrow (4)$

END OF THE QUESTION PAPER

Physics

SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct

answers, then

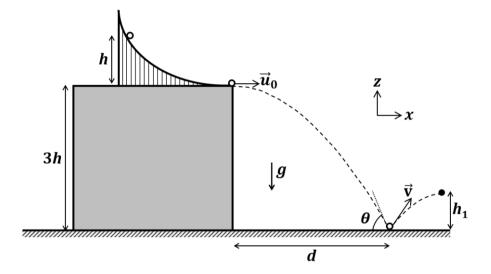
choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

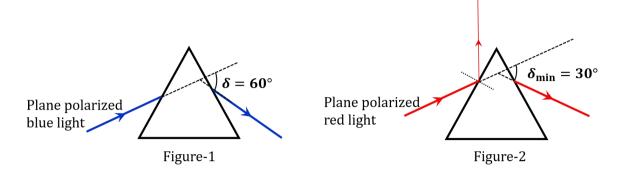

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

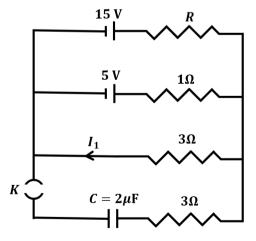
Q.1 A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3h from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity \vec{v} and reaches a maximum height h_1 . The acceleration due to gravity is g and the coefficient of restitution of the ground is $1/\sqrt{3}$. Which of the following statement(s) is(are) correct?


$$\begin{aligned} &(\mathrm{A})\,\vec{\mathrm{u}}_0 = \sqrt{2gh}\hat{x} \\ &(\mathrm{B})\,\vec{\mathrm{v}} = \sqrt{2gh}(\hat{x}-\hat{z}) \\ &(\mathrm{C})\,\theta = 60^\circ \end{aligned}$$

(B)
$$\vec{\mathbf{v}} = \sqrt{2gh}(\hat{\mathbf{x}} - \hat{\mathbf{z}})$$

(C)
$$\theta = 60^{\circ}$$

(D)
$$d/h_1 = 2\sqrt{3}$$


Q.2 A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{min} = 30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?

- (A) The blue light is polarized in the plane of incidence.
- (B) The angle of the prism is 45°.
- (C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
- (D) The angle of refraction for blue light in air at the exit plane of the prism is 60°.

Q.3 In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time $t = t_0$. Which of the following statement(s) is(are) correct?

[Given:
$$e^{-1} = 0.36$$
]

- (A) The value of the resistance R is 3 Ω .
- (B) For $t < t_0$, the value of current I_1 is 2 A.
- (C) At $t = t_0 + 7.2 \,\mu\text{s}$, the current in the capacitor is 0.6 A.
- (D) For $t \to \infty$, the charge on the capacitor is 12 μ C.

SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each guestion has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

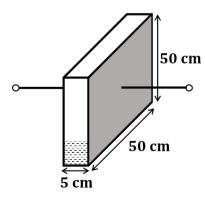
Full Marks : +3 If **ONLY** the correct option is chosen;

: 0 If none of the options is chosen (i.e. the question is unanswered); Zero Marks

Negative Marks : -1 In all other cases.

Q.4 A bar of mass M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with 5.00 m s⁻¹ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct?

(A)
$$\omega = 6.98 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$$
 (B) $\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$ (C) $\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$ (D) $\omega = 6.80 \text{ rad s}^{-1} \text{ and } v = 4.10 \text{ m s}^{-1}$


(B)
$$\omega = 3.75 \text{ rad s}^{-1} \text{ and v} = 4.30 \text{ m s}^{-1}$$

(C)
$$\omega = 3.75 \text{ rad s}^{-1} \text{ and v} = 10.0 \text{ m s}^{-1}$$

(D)
$$\omega = 6.80 \text{ rad s}^{-1} \text{ and v} = 4.10 \text{ m s}^{-1}$$

Q.5 A container has a base of 50 cm × 5 cm and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area 50 cm × 50 cm. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of 250 cm³ s⁻¹. What is the value of the capacitance of the container after 10 seconds?

[Given: Permittivity of free space $\epsilon_0 = 9 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

- (A) 27 pF
- (B) 63 pF
- (C) 81 pF
- (D) 135 pF

Q.6	One mole of an ideal gas expands adiabatically from an initial state (T_A, V_0) to final state $(T_f, 5V_0)$.
	Another mole of the same gas expands isothermally from a different initial state (T_B, V_0) to the
	same final state $(T_f, 5V_0)$. The ratio of the specific heats at constant pressure and constant volume
	of this ideal gas is γ . What is the ratio T_A/T_B ?

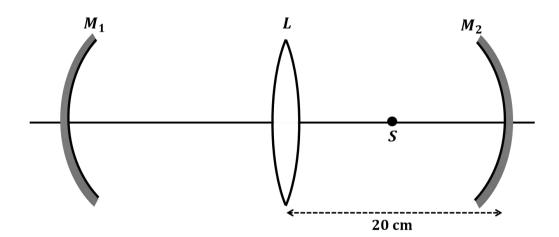
(A) $5^{\gamma-1}$ (B) $5^{1-\gamma}$ (C) 5^{γ} (D) $5^{1+\gamma}$

Q.7 Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are $h_{\rm P}$ and $h_{\rm Q}$, respectively, where $h_{\rm P}=R/3$. The accelerations of P and Q due to Earth's gravity are $g_{\rm P}$ and $g_{\rm Q}$, respectively. If $g_{\rm P}/g_{\rm Q}=36/25$, what is the value of $h_{\rm Q}$?

(A) 3R/5 (B) R/6 (C) 6R/5 (D) 5R/6

SECTION 3 (Maximum Marks: 24)

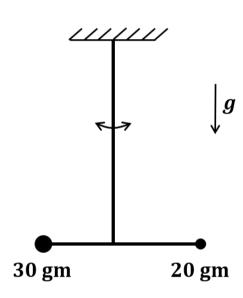
- This section contains SIX (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:


Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Q.8 A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n=4 to level n=3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is _____.

[Given: hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum]


Q.9 An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm and 24 cm, respectively. The distance between L and M_2 is 20 cm. A point object S is placed at the mid-point between L and M_2 on the axis. When the distance between L and M_1 is n/7 cm, one of the images coincides with S. The value of n is ______.

Q.10 In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n %. The value of n is ______.

Q.11 A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma = 5/3)$ and one mole of an ideal diatomic gas $(\gamma = 7/5)$. Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is ______ Joule.

- Q.12 A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s⁻¹, the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s⁻¹.
- Q.13 Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad⁻¹. The angular frequency of the oscillations in $n \times 10^{-3}$ rad s⁻¹. The value of n is _____.

SECTION 4 (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on **List-I** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

List-I

(P)
$$^{238}_{92}U \rightarrow ^{234}_{91}Pa$$

(Q)
$$^{214}_{82}Pb \rightarrow ^{210}_{82}Pb$$

$$(R)^{210}_{81}Tl \rightarrow {}^{206}_{82}Pb$$

(S)
$$^{228}_{91}Pa \rightarrow ^{224}_{88}Ra$$

List-II

- (1) one α particle and one β^+ particle
- (2) three β^- particles and one α particle
- (3) two β^- particles and one α particle
- (4) one α particle and one β^- particle
- (5) one α particle and two β^+ particles

(A)
$$P \rightarrow 4$$
, $Q \rightarrow 3$, $R \rightarrow 2$, $S \rightarrow 1$

(C)
$$P \rightarrow 5$$
, $Q \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 4$

(B)
$$P \rightarrow 4$$
, $Q \rightarrow 1$, $R \rightarrow 2$, $S \rightarrow 5$

(D)
$$P \rightarrow 5$$
, $Q \rightarrow 1$, $R \rightarrow 3$, $S \rightarrow 2$

Q.15 Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.

[Given: Wien's constant as 2.9×10^{-3} m-K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V-m]

List-I

(P) 2000 K

(Q) 3000 K

(R) 5000 K

(S) 10000 K

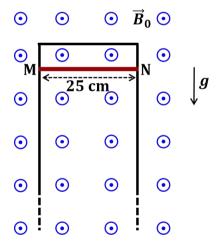
List-II

- (1) The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV.
- (2) The radiation at peak wavelength is visible to human eye.
- (3) The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
- (4) The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K.
- (5) The radiation at peak emission wavelength can be used to image human bones.

(A)
$$P \rightarrow 3$$
, $Q \rightarrow 5$, $R \rightarrow 2$, $S \rightarrow 3$

(C)
$$P \rightarrow 3$$
, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 1$

(B)
$$P \rightarrow 3$$
, $Q \rightarrow 2$, $R \rightarrow 4$, $S \rightarrow 1$


(D)
$$P \rightarrow 1$$
, $Q \rightarrow 2$, $R \rightarrow 5$, $S \rightarrow 3$

A series LCR circuit is connected to a 45 $\sin(\omega t)$ Volt source. The resonant angular frequency of Q.16 the circuit is 10^5 rad s⁻¹ and current amplitude at resonance is I_0 . When the angular frequency of the source is $\omega = 8 \times 10^4 \text{ rad s}^{-1}$, the current amplitude in the circuit is 0.05 I_0 . If L = 50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option.

List-I		List-II
(P) I_0 in mA		(1) 44.4
(Q) The quality factor of the circuit		(2) 18
(R) The bandwidth of the circuit in rad s^{-1}		(3) 400
(S) The peak power dissipated at resonance in	n Watt	(4) 2250
		(5) 500
(A) $P \rightarrow 2$, $Q \rightarrow 3$, $R \rightarrow 5$, $S \rightarrow 1$	(B) $P \rightarrow 3$	$3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 2$
(C) $P \rightarrow 4$, $Q \rightarrow 5$, $R \rightarrow 3$, $S \rightarrow 1$	` ′	$1, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 5$

Q.17 A thin conducting rod MN of mass 20 gm, length 25 cm and resistance 10 Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4$ T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.

[Given: The acceleration due to gravity $g = 10 \text{ m s}^{-2}$ and $e^{-1} = 0.4$]

List-I List-II (P) At t = 0.2 s, the magnitude of the induced emf in Volt (1) 0.07(Q) At t = 0.2 s, the magnitude of the magnetic force in Newton (2) 0.14(R) At t = 0.2 s, the power dissipated as heat in Watt (3) 1.20(S) The magnitude of terminal velocity of the rod in m s^{-1} (4) 0.12(5) 2.00(A) $P \rightarrow 5$, $Q \rightarrow 2$, $R \rightarrow 3$, $S \rightarrow 1$ (B) $P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$ (D) $P \rightarrow 3$, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 5$

(C) $P \rightarrow 4$, $Q \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 2$

END OF THE QUESTION PAPER

Chemistry

SECTION 1 (Maximum Marks: 12)

- This section contains **THREE (03)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

- Q.1 The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
 - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
 - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Q.2 In the following reactions, **P**, **Q**, **R**, and **S** are the major products.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CN} & \overbrace{\text{(ii) PhMgBr, then H}_3\text{O}^{\oplus}} \\ \hline \text{Ph-H} & + & \text{CH}_3\text{CCI} & \overbrace{\text{(ii) anhyd. AICI}_3} \\ \hline \text{CH}_3\text{CH}_2\text{CCI} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \text{CH}_3\text{CH}_2\text{CCI} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \text{PhCH}_2\text{CHO} & \overbrace{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \hline \\ \text{(ii) PhMgBr, then H}_2\text{O} \\ \hline \\ \hline \\ \text{(iii) HCN} \\ \hline \\ \text{(iv) H}_2\text{SO}_4, \Delta \\ \hline \end{array} \right. \quad \textbf{S}$$

The correct statement(s) about **P**, **Q**, **R**, and **S** is(are)

- (A) Both **P** and **Q** have asymmetric carbon(s).
- (B) Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) **P** has asymmetric carbon(s), **S** does **not** have any asymmetric carbon.

Q.3 Consider the following reaction scheme and choose the correct option(s) for the major products \mathbf{Q} , \mathbf{R} and \mathbf{S} .

SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.4 In the scheme given below, **X** and **Y**, respectively, are

Metal halide
$$\xrightarrow{\text{aq. NaOH}}$$
 White precipitate (**P**) + Filtrate (**Q**)

$$P \xrightarrow{\text{pbO}_2 \text{ (excess)}} X \text{ (a coloured species in solution)}$$

$$Q \xrightarrow{\text{MnO(OH)}_2, \text{Conc. H}_2\text{SO}_4} Y \text{ (gives blue-coloration with KI-starch paper)}$$

- (A) CrO₄²⁻ and Br₂
- (B) MnO₄²⁻ and Cl₂
- (C) MnO₄⁻ and Cl₂
- (D) MnSO₄ and HOCl
- Q.5 Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is

 $[\Lambda_{\rm m} = {\rm molar\ conductivity}]$

 $\Lambda_{\rm m}^{\rm o}$ = limiting molar conductivity

c = molar concentration

 $K_a = dissociation constant of HX$

- (A) $K_a \Lambda_m^o$
- (B) $K_a \Lambda_m^o/2$
- (C) 2 $K_a \Lambda_m^o$
- (D) $1 / (K_a \Lambda_m^o)$

Q.6 On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L^{-1} to 10^{-3} mol L^{-1} . The pK_a of HX is

- (A) 3
- (B) 4
- (C) 5
- (D) 2

Q.7 In the given reaction scheme, $\bf P$ is a phenyl alkyl ether, $\bf Q$ is an aromatic compound; $\bf R$ and $\bf S$ are the major products.

$$P \xrightarrow{HI} Q \xrightarrow{\text{(ii) NaOH}} R \xrightarrow{\text{(ii) (CH}_3CO)_2O} S$$

The correct statement about **S** is

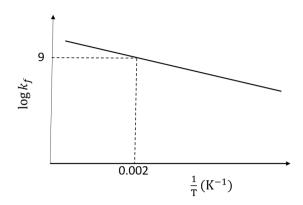
- (A) It primarily inhibits noradrenaline degrading enzymes.
- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is *ortho*-acetylbenzoic acid.

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

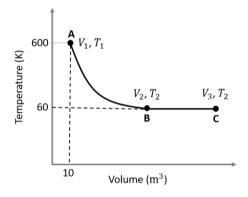

Q.8 The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product **X** in 75% yield. The weight (in g) of **X** obtained is____.

[Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]

Q.9 A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure \mathbf{x} atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be \mathbf{y} dm³ mol⁻¹. The value of \mathbf{x}/\mathbf{y} is ____.

[Use: Gas constant, $R = 8 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$]

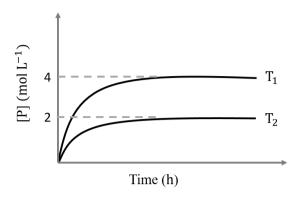
Q.10 The plot of $\log k_f$ versus $^1/_T$ for a reversible reaction A (g) \rightleftharpoons P (g) is shown.


Pre-exponential factors for the forward and backward reactions are 10^{15} s⁻¹ and 10^{11} s⁻¹, respectively. If the value of $\log K$ for the reaction at 500 K is 6, the value of $\log k_b$ at 250 K is ____.

[K = equilibrium constant of the reaction]

 k_f = rate constant of forward reaction

 k_b = rate constant of backward reaction]


Q.11 One mole of an ideal monoatomic gas undergoes two reversible processes (A \rightarrow B and B \rightarrow C) as shown in the given figure:

 $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process $(A \to B \text{ and } B \to C)$ is $RT_2 \ln 10$, the value of $2 \log V_3$ is ____.

[Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2}R$]

Q.12 In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure:

If $T_1 = 2T_2$ and $\left(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}\right) = RT_2 \ln x$, then the value of x is ____.

 $[\Delta G_1^{\Theta} \text{ and } \Delta G_2^{\Theta} \text{ are standard Gibb's free energy change for the reaction at temperatures } T_1 \text{ and } T_2,$ respectively.]

Q.13 The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is ____.

NC
$$\rightarrow$$
 CN (i) LiAlH₄ (excess), then H₂O \rightarrow P

(ii) Acetophenone (excess)

SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- **FOUR** options are given in each Multiple Choice Question based on **List-I** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

List-I

(P)
$$P_2O_3 + 3H_2O \rightarrow$$

(Q)
$$P_4 + 3NaOH + 3H_2O \rightarrow$$

(R)
$$PCl_5 + CH_3COOH \rightarrow$$

(S)
$$H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$$

List-II

- (1) P(O)(OCH₃)Cl₂
- (2) H₃PO₃
- (3) PH₃
- (4) POCl₃
- (5) H₃PO₄

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$

(B)
$$P \rightarrow 3$$
; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$

(C)
$$P \rightarrow 5$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$

(D)
$$P \rightarrow 2$$
; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$

Q.15 Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 27]

List-I

- (P) $t_{2g}^6 e_g^0$
- (Q) $t_{2g}^3 e_g^2$
- (R) $e^2 t_2^3$
- (S) $t_{2g}^4 e_g^2$

- (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$
- (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$
- (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$
- (D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$

List-II

- (1) $[Fe(H_2O)_6]^{2+}$
- (2) $[Mn(H_2O)_6]^{2+}$
- $(3) [Co(NH_3)_6]^{3+}$
- (4) [FeCl₄]
- $(5) [CoCl_4]^{2-}$

Q.16 Match the reactions in List-I with the features of their products in List-II and choose the correct option.

List-I

- aq. NaOH (-)-1-Bromo-2-ethylpentane S_N2 reaction (single enantiomer)
- aq. NaOH (Q) (-)-2-Bromopentane S_N2 reaction (single enantiomer)
- aq. NaOH (R) (-)-3-Bromo-3-methylhexane S_N1 reaction (single enantiomer)
- aq. NaOH H Me Br S_N1 reaction **(S)** (single enantiomer)
- (A) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$
- (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$
- (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$
- (D) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$

List-II

- (1) Inversion of configuration
- (2) Retention of configuration
- (3) Mixture of enantiomers
- (4) Mixture of structural isomers
- (5) Mixture of diastereomers

Q.17 The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-II

Phenol

List-I

(Q) Gattermann reaction (2) Toluene
$$(i)$$
 KMnO₄, KOH, Δ (ii) SOCl₂

(R) Gattermann-Koch reaction (3) Benzene
$$\frac{\text{CH}_3\text{Cl}}{\text{anhyd. AICl}_3}$$

(S) Rosenmund reduction (4) Aniline
$$\frac{\text{NaNO}_2/\text{HCI}}{273-278 \text{ K}}$$
(5) Phenol $\frac{\text{Zn, } \Delta}{\text{Zn, } \Delta}$

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$

(B)
$$P \rightarrow 1$$
; $Q \rightarrow 3$; $R \rightarrow 5$; $S \rightarrow 2$

(C)
$$P \rightarrow 3$$
; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$

(D)
$$P \rightarrow 3$$
; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$

END OF THE QUESTION PAPER