Subject : PCM

Topic : Maths

Q1: The length of the latus rectum of the parabola (x+2)2 = -14(y-5) is

Α7		
B 14		
C 21		
D 28		

Q2: One of the foci of the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$ is

A (3, 0)	
B (4, 0)	
C (5, 0) D (9, 0)	
D (9, 0)	

Q3: If the circles $x^2 + y^2 - 8x - 6y + c=0$ and $x^2 + y^2 - 2y + d = 0$ cut orthogonally, then c + d equals

A 6 B 4 C 2 D 0

Q4 : The radius of the circle which touches both axes and passes through the point (2, 1) can be

A 1		
B2		
C 3		
D 4		

A √6			
в 2 √6			
сз√б			
D 4 √6			

Q5 : The area of the triangle with vertices P(1, 2, 3), Q (4, 5, 6) and R(0, 0, 0) is

Q6: The unit vector in the direction of the vector \overrightarrow{AB} if A = (-2, -1, 3) and B = (1, 1, 0) is $(i + j\beta)^{k}$, then is $(i + \beta)^{k}$ is

А	$\frac{3}{\sqrt{22}}$
в	$\frac{5}{\sqrt{22}}$
с	$\frac{-3}{\sqrt{22}}$
D	$\frac{-5}{\sqrt{22}}$

Q7: If
$$\begin{pmatrix} 3x-y & x+3y\\ 2x-z & 2y+z \end{pmatrix} = \begin{pmatrix} 7 & 9\\ 5 & 5 \end{pmatrix}$$
, then x+y+z equals

A 3			
B 6			
C 9			
D 12			

Q8 :	If the product <i>abc</i> = 1 , then the value of the determinant	-a ² ba ac	ab —b ² bc	ac bc $-c^2$	is equal to
A 1					
B 2					
C 3					
D 4					

D 4			

Q9: If (x, y, z) is the solution of the equations 4x + y = 7, 3y + 4z = 5, 5x + 3z = 2, then the value of x+y+z equals

A 8 B 6	
B 6	
C 3	
DO	

$\begin{array}{c} Q10 \\ \vdots \\ \end{array} If \begin{pmatrix} e & f \\ g & h \end{pmatrix}$) is the inverse of the matrix $\begin{pmatrix} a \\ c \end{pmatrix}$	$\begin{pmatrix} b \\ d \end{pmatrix}$ where $ad - bc = 1$, then g equals
Ac		
B-c		
Cb		
D-b		

Q11 If <i>f</i> : :	$\mathbb{R} \to \mathbb{R}$ is a function defined by $f(x) = x^2$, then which of the following is true?
A f is 1-1 l	but not onto
B f is ont	to but not 1-1
C f is nei	ther 1-1 nor onto
D f is bot	th 1-1 and onto

Q12 Consider the set A = $\{1, 2, 3\}$ along with the relation R = $\{(1,1), (2,2), (1,2), (2,1), (3,3)\}$. Which : of the following statements is true?

A The relation is symmetric but not transitive
B The relation is transitive but not symmetric
C The relation is neither symmetric nor transitive
D The relation is both symmetric and transitive

Q13 let z1 = 1+i $\sqrt{3}$ and z2 = 1+i, then arg(z1/z2)is

<u> </u>		5
Α	π/3	ľ
В	$\pi/4$	
С	$\pi/6$	1
D	π/12	Ì

Q14 Any non zero complex number z satisfying |z-i| = |z+i| must lie on

A real axis	ĩ
B imaginary axis	1
C unit circle	1
D the line parallel to real axis through $z = i$	1

Q15 : The value of $\left[\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right]^4$ is

: A

Α-i π		
Α-i π Βi π Ci		
D -i		

Q16 If	👩 is the cube root of unity, then (1 -	ω+	ω ^{2)5 + (1 +}	$\omega \sim \omega^{2)5}$ equals
---------------	--	----	-------------------------	-----------------------------------

B 16			
C 32			
D 64			

Q17 :

7	The value of tan	$\left[\sin^{-1}\frac{5}{13}+\right]$	$\cot^{-1}\frac{4}{3}$	is

<u>2</u>	 	
A 26/11		
B 56/33		
C 63/41		
,		
D 65/43		
B 88, 19		

Q :	¹⁸ If tan-1 x + 2 cot-1 $x = \frac{\pi}{3}$, then the value of x is
Α	- √3
в	$\sqrt{2}$
С	$\sqrt{2}$
D	√3

Q19 Which of the following is not a solution of the following equation ?

: $3 \tan 2\theta \sin = \theta$	
An π	
$Bn \frac{\pi}{2}$	
C n + (-1)n $\frac{\pi}{6}$	
DO	

Q20
: If
$$\sqrt{\frac{y}{x}} + \sqrt{\frac{x}{y}} = 1$$
, then $\frac{dy}{dx}$ equals
A $\sqrt{\frac{y}{x}}$

.

Q21	lf x = 3t/(1 +3	t) and y = 3t/(1 ² t) theħ

 $\frac{dy}{dx}$ at t=1 equals

A -6	
B -1	
С1	
D 6	

Q22 The equation of the normal to the curve given by $x^2 + 2x - 3y + 3 = 0$ at the point (1,2) is

A $3x + 4y - 11 = 0$	
B 3x - 4y + 11 = 0	
C -3x + 4y + 11 = 0	
D 3x - 4y - 11 = 0	

Q23 If f(x) = x5 - 5x + 5 then which of the following is TRUE ?

:
A f attains maximum at x = 1
B f attains minimum at x = 1
C f attains maximum at <i>x</i> = 0
D f attains minimum at x = -1

Q24 : The value of the integral $\int_{0}^{\frac{\pi}{2}} \log \tan \theta \ d\theta$ is

A 0	
В1	

с	<u>π</u> 2	
DI	pg2	

Q25 The area enclosed between the curve y = 11x - 24 - x2 and the line y = x is

:			
A 1/3 B 3/4			
B 3/4			
C 1			
D 4/3			

Q26 : The solution of the differential equation $\frac{dy}{dx} = y2/x$ passing through the point (1, -1) is

A 1/y + logx =0	
B 1/y - logx =0	
C y + logx =0	
D y - logx =0	

Q27
The differential equation $ex\frac{dy}{dx}$ + 3y = x2 y isA Separable and not linearB Both separable and linearC Linear and not separableD Neither separable nor linear

Q28 Let the mean of *n* observations is μ . If the first term is increased by 1 and second by 2 and so on, then the new mean is

A	μ ⁺ n
В	μ + n/2
С	+ <u>n(n+1)</u>
_	2

$D \mu + \frac{(n+1)}{2}$	$\mu + \frac{(n+1)}{2}$		
---------------------------	-------------------------	--	--

Q29 The arithmetic mean and mode of a given data are 24 and 12 respectively. Then its median is

:			
A 25			
B 18			
C 20			
D 22			

Q30 The probability of getting two heads out of 5 tosses of an unbiased coin is

Q31 Cards marked with numbers 2 to 105 are placed in a box and mixed. One card is chosen at random. The probability that the number on the card is less than 15 is

1/8 1/9	
1/9	
7/8 8/9	
8/9	

Q32 An urn contains 4 black, 5 white and 6 red balls. A ball is drawn at random. The probability that it is not black is

A 4/15			
A 4/15 B 9/15 C 11/15			
C 11/15			
D 13/15			

Q33 In a chess tournament, assume that your probability of winning a game is 0.3 against level 1

: players, 0.4 against level 2 players and 0.5 against level 3 players. It is further assumed that among the players 50% are at level 1, 25 % are at level 2 and the remaining are at level 3. The probability of winning a game against a randomly chosen player is

A 0.275	
B 0.375	
C 0.225	
D 0.325	
Q34 A man repays a loan of Rs. 32	50 by paying Rs. 20 in the first month and then increases the

: payment by Rs.15 every month. The number of months it takes to clear the loan is

A 20	
B 25	

C 35 D			
40			

Q35 The coefficient of x3 in the expansion of (x2 - 2/x)6 is

2 (V)		
A -160 B -80		
B -80		
C -40 D 0		
D 0		

Q36 If the equation of the sphere through the circle $x^2 + y^2 + z^2 = 5$; 2x + 3y + 4z = 5 and through

: the origin is

x2 + y2 + z2 - 2x - 3y - 4z + C = 0 then the value of C is

AIB			
-1 C 0			
D 5			

Q37 The equation of the plane containing the lines (x+1)/3 = (y+3)/5 = (z+5)/7 and (x-2)/1 = (y-4)/3: = (z-6)/5

A x + 2y + z = 0	
B x - 2y + z = 0	
C x - 2y - z = 0	
D x + 2y - z = 0	

Q38 Let $(n) = \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2-1}} + \dots + \frac{1}{\sqrt{n^2-(n-1)^2}}$. Then $\lim_{n \to \infty} f(n)$ equals : A $\pi/4$ B π/2 C /2 **D** 0

Q39 A particle is acted upon by three forces in one plane, equal to $2,2\sqrt{2}$ and 1 Kg forces respectively;

: the first is horizontal, the second acts at 450 to the horizontal and the third is vertical. Then the angle θ which the resultant makes with the positive x-axis is

A tan-1(3/4)	
B tan-1(4/3)	
C tan-1(<u>√2</u> /4)	
D tan-1(1)	

Q40 A block of mass 5 Kg starts to slide down a frictionless plane having an inclination of 250 from rest

: at the top. The length of the incline is 2 metre. Then its speed when it reaches the bottom of the incline is

A 4.1 m/s	
B 6.3 m/s	
C 7.1 m/s	
D 9.3 m/s	